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ABSTRACT. We study the automorphisms of compact kähler manifolds hav-
ing slow dynamics. First, we give an upper bound on the polynomial entropy
by adapting Gromov’s classical argument, and we study the possible values
of polynomial entropy in dimension 2 and 3. Second, we classify minimal
automorphisms in dimension 2. Third, we prove that every automorphism
with sublinear derivative growth is an isometry ; we give a counter-example
in the C∞ context which answers negatively a question of Artigue, Carrasco-
Olivera and Monteverde on polynomial entropy. In the Appendix, written in
collaboration with Junyi Xie, we classify compact kähler threefolds X with
a free group of automorphisms acting freely on X .

(work in progress)

1. INTRODUCTION

1.1. Automorphisms. Let X be a compact Kähler manifold of dimension k.
By definition, holomorphic diffeomorphisms f : X → X are called automor-
phisms; the group Aut(X) of all automorphisms is a (finite dimensional) com-
plex Lie group, with possibly infinitely many connected components; its neu-
tral component will be denoted Aut(X)0; its Lie algebra is the algebra of holo-
morphic vector fields on X .

Our goal is to study automorphisms whose dynamical behavior is of “low
complexity”. The main topics will be:

• polynomial entropy;
• growth rate of the derivative ‖ D f n ‖;
• equicontinuity of ( f n) almost everywhere;
• automorphisms acting minimally, or without periodic orbit.

We focus on low dimensional manifolds X , and state a few conjectures in
higher dimension.
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1.2. Polynomial entropy. Let (X ,d) be a compact metric space and f : X→X
a continuous map. The Bowen metrics, at time n for the map f , are defined by
the formula

d f
n (x,y) := max

0≤ j≤n−1
d( f j(x), f j(y)). (1.1)

Define the (n,ε)-covering number Covε(n) as the minimal number of balls of
radius ε in the metric dn that cover X . The topological entropy of the map f ,
htop( f ) ∈ R+∪{+∞}, is the double limit

htop( f ) := lim
ε→0

limsup
n→∞

1
n

log(Covε(n)) . (1.2)

It measures the exponential growth rate of the number of orbits that can be
distinguished at a given precision ε during a period of observation equal to n.
We are interested in the understanding of "simple" maps, with a topological
entropy equal to zero. In this setting, we consider the polynomial entropy

hpol( f ) := lim
ε→0

limsup
n→∞

1
logn

log(Covε(n)) . (1.3)

This quantity must be taken in R+∪{+∞}, but it will be finite for most of the
systems we shall consider. The polynomial entropy has already been studied
in several contexts: for integrable Hamiltonian systems by Jean-Pierre Marco
[32], for Brouwer homeomorphisms by Louis Hauseux and Frédéric LeRoux
[18], for various geometric situations by Patrick Bernard, Clémence Labrousse,
and Marco [2, 24, 25, 26, 27, 33]. A similar notion was defined by Anatole
Katok and Jean-Paul Thouvenot (see [22] and [19, 21]).

Our first result, gives an upper bound on the polynomial entropy for the
automorphisms of low complexity and precise this bound in small dimensions;
a version of this result will also be given for birational transformations. We
refer to Sections 2 and 3 for precise statements, and in particular to Theorems
2.1, 3.2 and Proposition 4.1. We also advance on the complete computation
of polynomial entropy for automorphisms of surfaces (see Sections 4 and 5).
For now, this computation is not yet complete: there are automorphisms of
surfaces preserving a genus 1 fibration for which we don’t know yet the value
of hpol( f ).

1.3. Growth of derivatives. In the setting of C ∞ diffeomorphisms g : M→M
of compact manifolds, the growth of the derivatives, i.e. the growth of the
sequence maxx∈M ‖ D(gn)x ‖ can be very slow, for instance less than nα for
every α > 0 (see Remark 7.8). In Section 7, we describe such an example: this
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is a variation on classical ideas due to Furstenberg (see Theorem 7.5). As an
application, we obtain a counter-example to a question by Artigue, Carrasco-
Olivera and Monteverde concerning polynomial entropy ([1]).

Our second goal is to show that the growth of the derivative of automor-
phisms does not exhibit such behaviors: if the growth of the derivative is sub-
linear, then the automorphism preserves a kähler metric (Theorem 8.1).

1.4. Minimal actions. Another way to say that the dynamics of an automor-
phism is not chaotic is to suppose that “all orbits look the same”. One way
to do that is to assume that the action is minimal: every orbit is dense (for
the euclidean topology). In the smooth setting, there are diffeomorphisms of
compact manifolds (and homeomorphisms of surfaces) with positive topologi-
cal entropy acting minimally. We don’t know whether one can construct such
an example for automorphisms of compact kähler manifolds. Here, we obtain
a classification of automorphisms of surfaces satisfying one of the following
density properties: f having no finite orbit; all orbits of f are Zarisky dense;
all orbits of f are dense in Euclidian topology ( f is minimal). This classifi-
cation is obtained in Section 6. Among other results, we prove that minimal
automorphisms of surfaces exist only on tori. We conjecture that this is true
for any dimension, the first non-trivial case being Calabi-Yau manifolds in di-
mension 3.

1.5. Appendix. Instead of looking at the action of just one automorphism,
one can consider the action of a group of transformations. Since groups of
automorphisms satisfy Tits alternative, it is natural to look at non-abelian free
groups, and this is what we do in the appendix, based on a joint work with
Junyi Xie. We classify compact kähler manifolds of dimension ≤ 3 with a free
action of a non-abelian free group.

1.6. Acknowledgement. Thanks to Benoit Claudon, Christophe Dupont, Bas-
sam Fayad, Sébastien Gouëzel, and Frédéric Le Roux for interesting discus-
sions on this topic.
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Part I.– Polynomial entropy : upper bound for automorphisms

2. UPPER BOUND ON THE POLYNOMIAL ENTROPY

Let f be an automorphism of a compact Kähler manifold X . We shall denote
its action on the cohomology of X by f ∗ : H∗(X ;Z)→ H∗(X ;Z). This linear
action preserves the Dolbeault cohomology groups H p,q(X ;C)⊂H∗(X ;C) and
f ∗j will denote the action on H j, j(X ;C) or H j, j(X ;R). We define the polyno-
mial growth rates s j( f ) ∈ R+∪{+∞} by

s j( f ) := lim
n→+∞

log ‖ ( f n)∗j ‖
log(n)

.

We shall see that s j( f ) is a non-negative integer when the topological entropy
of f is equal to 0, and is infinite if htop( f )> 0. Then, we set

s( f ) =
dimC(X)

∑
j=0

s j( f ) =
dimC(X)−1

∑
j=1

s j( f ). (2.1)

The goal of this Section is to prove the following

Theorem 2.1 (Upper bound on polynomial entropy of automorphisms). Let X
be a compact Kähler manifold. If f is an automorphism of X with htop( f ) = 0,
then hpol( f ) is finite and is bounded from above by the following integers

dimC(X)+ s( f ), dimC(X)(s1( f )+1), dimC(X)×b2(X).

The proof follows Gromov’s original argument providing an upper bound
for the topological entropy of a holomorphic endomorphism. We denote by k
the complex dimension of X .

Remark 2.2. In [31], Federico Lo Bianco proved that the sequence j 7→ s j( f )
is concave. Since s0( f ) = 0, and sk− j( f ) = s j( f ), this implies ≤ s j( f ) ≤
min{ j,k− j}× s1( f ). We shall see that s j( f )≤ b2 j(X)−1 if htop( f ) = 0.

2.1. Gromov’s upper bound.

Theorem 2.3 ([16], [40, 39]). Let f : X → X be a holomorphic endomorphism
of a compact Kähler manifold X. Then htop( f ) = logλ( f ), where λ( f ) is the
spectral radius of the action of f ∗ on the cohomology H∗(X ,C).

In fact, Yomdin proved the lower bound logλ( f ) ≤ htop( f ) for C ∞ maps of
compact manifolds, and Gromov obtained the upper bound htop( f )≤ logλ( f )
for holomorphic transformations of compact Kähler manifolds. Gromov’s proof
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first relates the topological entropy to the volumes of iterated graphs Γ(n),
and then bounds them by a cohomological computation; both steps make use
of the Kähler assumption. Here, Γ(n) is the image of X under the map x 7→
(x, f (x), . . . , f n−1(x)). That is,

Γ(n) :=
{

x = (x0,x1, . . . ,xn) ∈ Xn+1 | x j = f (x j−1)
}
, (2.2)

with n ∈ Z∗+. The iterated graphs Γ(n) are subsets of Xn+1, and this set Xn+1

is endowed with the distance

dX
n (x,x

′) := max
0≤ j≤n

d(x j,x′j) (2.3)

for every pair of points x and x′ in Xn+1. Let ε be a positive real number.
By definition, the (n,ε)-capacity Capε(n) is the minimal number of balls of
radius ε in the metric dX

n that cover Γ(n) ⊂ Xn+1. A set S is (n,ε)-separated
if dX

n (x,y)> ε for every pair of elements x 6= y in S, and the (n,ε)-separation
constant Sepε(n) is the maximal number of elements in such a set.

Lemma 2.4. For all n≥ 1 and ε > 0 we have

Capε(n) = Covε(n) and Sep2ε(n)≤ Capε(n)≤ Sepε(n).

In particular, one can replace Covε(n) by Capε(n) or by Sepε(n) in the defini-
tion of the topological and polynomial entropies without changing their values.

Proof. For x and x′ in Γ(n), one has dX
n (x,x

′) = d f
n (x0,x′0), and the first equality

follows. The comparison between Sep and Cap holds for every metric space.
Indeed, if y1, . . ., y` are 2ε-separated, two of them can not be in the same ball
of radius ε; this proves Sep2ε(n) ≤ Capε(n). And if {y1, . . . ,y`} is a maximal
set of ε-separated points, then every point x is at a distance≤ ε from one of the
y j, proving Capε(n)≤ Sepε(n). �

Denote by π j : Xn+1→ X the projection on the j-th factor, for j = 0, . . . ,n.
Now, fix a Kähler metric on X , defined by some Kähler form κ, and put the
metric on Xn which is defined by the Kähler form κn = ∑ j π∗jκ. This metric
differs from dX

n (as `2 norm differs from `∞ norm). Let Vol(Γ(n)) be the 2k-
dimensional volume of Γ(n) with respect to the metric κn.

In order to relate VolΓ(n) to (n,ε)-capacity, consider the following defini-
tion. Let W be a submanifold of Xn of dimension dimC(W ) = d. The ε-density
Densε(W,z) at a point z ∈W is the volume of the intersection of W with a κn-
ball Bz(ε) of radius ε centered at z:

Densε(W,z) := Vol2d (W ∩Bz(ε)) . (2.4)
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The (ε,n)-density Densε(W ) is defined as the infimum

Densε(W ) := inf
z∈W

Densε(W,z). (2.5)

Set Densε(n) :=Densε(Γ(n)). Then, Sepε(n)Dens ε

2
(n)≤VolΓ(n) for any ε> 0

and Lemma 2.4 gives

logCap2ε(n)≤ logVolΓ(n)− logDensε(n). (2.6)

All this is obvious. Then, Gromov makes two crucial observations. Firstly,
complex submanifolds of a compact Kähler manifold are locally minimal for
the Kähler metric (Federer’s theorem), and this forces a lower bound for the
density:

Theorem 2.5. [16] Fix a Kähler metric κ on X, and a real number ε > 0.
There exists a positive constant C = C(ε,κ) that does not depend on n such
that Densε(n)≥C > 0.

In particular, the term logDensε(n) becomes negligeable in the Equation (2.6)
when divided by n (or by log(n), see below). This provides the desired bound
htop( f )≤ limsupn n−1 logVolΓ(n).

Secondly, Gromov remarks that this volume growth may be estimated by
looking at the action of f on the cohomology of X . This comes from the
definition of Γ(n), and from the fact that the volume of a complex submanifold
may be computed homologically in Kähler manifolds: the volume of Γ(n) is
obtained by pairing its homology class with the cohomology class of κk

n. We
reproduce this argument below to obtain Theorem 2.1.

2.2. Proof of Theorem 2.1.

2.2.1. Entropy versus volumes. From Theorem 2.5 and Equation (2.6), we ob-
tain

hpol( f )≤ limsup
n→∞

logVol(Γ(n))
logn

. (2.7)

Note that both parts of this inequality are infinite when htop( f )> 0.

2.2.2. Action on cohomology.

Lemma 2.6. Let g be a C ∞-transformation of a compact manifold M. If
htop(g) = 0, then g∗ : H∗(X ;R)→ H∗(X ;R) is virtually unipotent: there is
a positive iterate gm such that all eigenvalues α ∈ C of (gm)∗ are equal to 1.
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Proof. Since g∗ preserves the integral cohomology H∗(M;Z) its characteristic
polynomial χg∗(t) is an element of Z[t] with leading coefficient equal to 1.
Hence, the eigenvalues of g∗ are algebraic integers. Yomdin’s lower bound
logλ(g)≤ htop(g) = 0 shows that all roots of χg∗(t) have modulus ≤ 1, and by
Kronecker lemma they are roots of 1 (see [23]). Then, if m is divisible by the
least common multiple of all the orders of the eigenvalues, all eigenvalues of
(gm)∗ are equal to 1. �

Fix a norm ‖ · ‖ on the cohomology groups of X , and assume that f ∗ is
unipotent. One can find a basis of H j, j(X ;C) in which f ∗j is a diagonal of
Jordan blocks: the number s j( f ) is the polynomial growth rate of ‖ ( f n)∗j ‖ and
s j( f )+ 1 is therefore equal to the size of the largest Jordan block of f ∗j . In
particular, s j( f )≤ h j, j(X)−1≤ b2 j(X)−1.

2.2.3. Volumes of iterated graphs. In this third step we use one more time that
X is a Kähler manifold of dimension k.

Theorem 2.7 (Wirtinger). Let Y be a compact Kähler manifold with a fixed
Kähler form κY . If W is a complex analytic submanifold of Y of dimension d,
its volume with respect to the Kähler metric is equal to

Vol(W ) =
∫

W
(κY )

d = [W ] · [κY ]
d.

With W = Γ(n)⊂ Xn+1, we obtain

Vol(Γ(n)) =
∫

Γ(n)
κ

k
n =

∫
X

(
∑

j
π
∗
jκ

)k

=
∫

X

(
n

∑
j=0

( f j)∗κ

)k

. (2.8)

Now, let us apply the results of the previous paragraph. Since htop( f m) =

mhtop( f ) = 0 and hpol( f m) = hpol( f ), we replace f by a positive iterate f m

to assume that f ∗ is unipotent. Then ‖ ( f n)∗1[κ] ‖≤ C1 ‖ [κ] ‖ ns1( f ) for some
uniform constant C1 > 0. As a consequence, the norm of the class [∑n

j=0( f j)∗κ]

is no more than C′ ‖ κ ‖ ns1( f )+1, for some C′ > 0, and since the cup product
is a continuous, multi-linear map, we get Vol(Γ(n)) ≤C′′nk(s1( f )+1) for some
C′′ > 0. This proves two of the upper bounds of Theorem 2.1.

Lemma 2.8. Let ` be an integer with 0≤ `≤ k. Then

‖ ( f n1)∗[κ]∧ . . .∧ ( f n`)∗[κ] ‖≤C ‖ [κ] ‖`
`

∏
j=1

(n j−n j+1− . . .−n`)s j( f )

for some constant C > 0 and every sequence of integers n1 ≥ n2 ≥ . . .≥ nk ≥ 0.



AUTOMORPHISMS WITH SLOW DYNAMICS 8

Proof. First, for every class ω in H j, j(X ;C), ‖ ( f n)∗jω ‖≤ C jns j( f ) ‖ ω ‖ be-
cause the norm of the operators ( f n)∗j on H j, j(X ;C) is bounded by C jns j( f )

for some positive constant C j, j = 1, . . . ,k. Then, to estimate ‖ ( f n1)∗[κ]∧
( f n2)∗[κ] ‖ we write

‖ ( f n1)∗[κ]∧ ( f n2)∗[κ] ‖ = ‖ ( f n2)∗
(
( f n1−n2)∗[κ]∧ [κ]

)
‖ (2.9)

≤ C(n2)
s2( f )(n1−n2)

s1( f ) ‖ κ ‖2 . (2.10)

Here the constant C is the product of C1, C2, and a constant D such that ‖
ω∧κ ‖≤ D ‖ κ ‖‖ ω ‖ for all classes ω in H1,1(X ;C). This proves the lemma
for `= 2, and this argument extends to other values of `≤ k. �

Now, by recursion on `, there is a positive constant B` such that

∑ ‖ ( f n1)∗[κ]∧ . . .∧ ( f n`)∗[κ] ‖≤ B` ‖ [κ] ‖` n`+s1( f )+...s`( f ) (2.11)

where the sum is over all `-tuples (ni) such that n≥ n1 ≥ n2 ≥ . . .≥ n` ≥ 0
With ` = k we obtain Vol(Γ(n)) ≤ B′nk+s( f ) for some B′ > 0. This concludes
the proof of Theorem 2.1.

In the following Section, we adapt the proof of such an upper bound to the
case of meromorphic transformation. Let us make a following last remark:
unfortunately, one can not adapt the lower bound argument for the polynomial
entropy by following the arguments of Yomdin for the proof of Theorem 2.3
since some of the terms in his bounds have exponential growth. Although,
Bowen-Manning arguments can be adapted to prove the following

Lemma 2.9. Let X be a compact manifold X, Γ = π1(X) =< S >, S being
a symmetric set of generators. Let f be a homeomorphism f : X → X, and
ρ( f ∗) := limsupn→∞

logdiam( f ∗)n(S)
logn . Then the following lower bound holds:

hpol f ≥ ρ( f ∗)−1.

3. GENERALIZATION FOR MEROMORPHIC TRANSFORMATIONS

In this section, we explain how to extend Theorem 2.1 to the case of mero-
morphic transformations. To do it, we just have to replace Gromov’s argument
by a result of Dinh and Sibony, the drawback being the difficulty to estimate the
growth of the volumes of the iterated graphs for meromorphic transformations.

3.1. Growth on cohomology, graphs and entropy. Let g be a meromorphic
transformation of a compact Kähler manifold X of dimension k; let Ind(g) be
its indeterminacy locus. Denote by (g)∗j the linear action of g on the coho-
mology group H j, j(X ,C) ⊂ H∗(X ,C) (see [11, 17] for a definition), and fix a



AUTOMORPHISMS WITH SLOW DYNAMICS 9

norm on H∗(X ,C). For every n≥ 0, denote by ‖ (gn)∗j ‖ the norm of the linear
transformation (gn)∗j , define s j(g) ∈ R+∪{+∞} by

s j(g) = limsup
n→+∞

log ‖ (gn)∗j ‖
log(n)

(3.1)

and set s(g) := s1(g) + . . .+ sk(g). Since (gn+m)∗j does not coincide with
(gm)∗j ◦ (gn)∗j in general, it is not clear whether this supremum limit is actu-
ally a limit. The j-th dynamical degree is

λ j(g) = limsup
n→+∞

‖ (gn)∗j ‖1/n,

and this supremum limit is actually a limit (see [11]). In these definitions of
s j(g) and λ j(g), we could replace ‖ (gn)∗j ‖ by

∫
X(g

n)∗(κ j)∧κk− j for any fixed
Kähler form on X ; this would not change the result (see [11, 8]).

Remark 3.1. Except in dimension ≤ 2, we don’t know whether s j(g) is an
integer when λ j(g) = 1; it could a priori be the case that ‖ (gn)∗j ‖ grows like

exp(
√

n) or n
√

3 as n goes to +∞. We refer to [38] for this type of questions,
and to [11, 8] for the main properties of ‖ (gn)∗j ‖.

By definition, the iterated graph Γ(n) of g is the closure of the set of points

(x,g(x), . . . ,gn(x)) ∈ Xn+1

such that x /∈ Ind(g), g(x) /∈ Ind(g), . . ., gn−1(x) /∈ Ind(g). To define the no-
tions of entropy, we need to take care of the indeterminacy locus Ind(g). As
in [11, 17], we simply use (n,ε)-separated sets (as in § 2.1 and Lemma 2.4), but
for orbits avoiding Ind(g); this way, we can talk of topological or polynomial
entropy.

3.2. A bound on the polynomial entropy. The results of Theorem 2.1 can be
extended to meromorphic transformations, as follows.

Theorem 3.2 (Upper bound on polynomial entropy of meromorphic transfor-
mations). Let X be a compact Kähler manifold. If g : X 99KX is a meromorphic
transformation of X, then

hpol(g)≤ dimC(X)+
dimC(X)

∑
j=0

s j(g)≤
dimC(X)

∑
j=0

h j, j(X).

Note that s0(g) = 0 and for k = dimC(X) the number λk(g) coincides with
the topological degree of g; thus, if the topological degree of g is at least 2, then
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sk(g) = +∞ and the theorem is empty. Consequently, we can assume from the
start that g is a bimeromorphic transformation of X .

Sketch of Proof. The first steps of Gromov’s argument remain valid: if one
defines the polynomial growth of the iterated graphs by

povol(g) := limsup
n→+∞

logVol(Γ(n))
log(n)

, (3.2)

then hpol(g) ≤ povol(g). Our goal is to show that povol(g) is bounded from
above by k+ s1(g)+ . . .+ sk(g), where k = dimC(X). For this, we simply copy
the argument of [12]. More precisely, replacing Lemma 2 of [12] by Corol-
lary 1.2 of [11], the results of [12] remain valid on compact Kähler manifolds.
Thus, there is a positive constant C, which depends only on the geometry of X ,
such that

‖ f ∗T ‖≤C ‖ f ∗j ‖‖ T ‖ (3.3)
for every meromorphic map f : X → X and every closed positive current T of
bi-degree ( j, j) on X . Here, ‖ T ‖ is the mass of T , computed with respect to a
fixed Kähler form κ: ‖ T ‖= 〈T |κk− j〉. And f ∗T is the positive current which
is defined on X \ Ind( f ) by pull-back; this upper bound on the mass of f ∗T
implies that the extension of f ∗T by 0 on Ind( f ) is a closed positive current,
with the same mass: we shall also denote by f ∗T this current. Then, as in
the proof of Lemma 5 of [12], or Lemma 2.8 above, we obtain the following
estimate: for every integer 0≤ `≤ k, and every decreasing sequence of integers
n1 ≥ n2 ≥ . . .≥ nk,

‖ (gn1)∗[κ]∧ . . .∧ (gn`)∗[κ] ‖≤C′
`

∏
j=1
‖ (gn j−n j+1−...−n`)∗j ‖‖ [κ] ‖ (3.4)

for some constant C′ > 0. By definition, for every η > 0 and for m larger than
some integer m(η; j) we have ‖ (gm)∗j ‖≤ ms j(g)+η. By recursion on `, we get

‖ (gn1)∗[κ]∧ . . .∧ (gn`)∗[κ] ‖≤C′′n`(1+η)+s1(g)+...s`(g) ‖ [κ] ‖ (3.5)

for some constant C′′. To deduce the result, take `= k and let η go to 0. �
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Part II.– Polynomial entropy in dimension 2

4. POLYNOMIAL ENTROPY IN SMALL DIMENSIONS

Proposition 4.1 (Small dimension automorphisms). Let X be a compact Käh-
ler manifold of dimension dimC(X) ≤ 3. If f ∈ Aut(X) satisfies htop( f ) = 0
then hpol( f )≤ dimC(X)2.

The goal of this section is to prove this Proposition.

4.1. Curves and surfaces. If X is a curve, and f is an automorphism of X ,
the action of f on H2(X ;C) is just the identity, Theorem 2.1 provides the upper
bound hpol( f )≤ dimC(X) = 1. In fact, if the genus of X is positive, then f is an
isometry (for the euclidean or hyperbolic metric), and hpol( f ) = 0. If the genus
of X is 0, then f is given by a Möbius transformation, and either hpol( f ) = 1,
or f is conjugate to an element of PU2(C) ⊂ PGL2(C) and then hpol( f ) = 0.
In particular, if hpol( f ) = 0, then f is an isometry for some riemmanian metric.

Suppose now that f is a bimeromorphic transformation of a compact Kähler
surface X . As we shall see in Section 5, either λ1( f ) > 1, or λ1( f ) = 1 and
s1( f )∈ {0,1,2}. Thus, we obtain the following result: If f is a bimeromorphic
transformation of a compact Kähler surface, either λ1( f ) > 1, or hpol( f ) ≤
4. Proposition 4.1 follows from this statement and Yomdin’s theorem when
dimC(X) = 2.

Remark 4.2. On surfaces, one shall also prove that f is an isometry when
hpol( f ) = 0.

4.2. Threefolds. Here we use the results of Federico Lo Bianco (see Section
6.2 in [30] as well as [29] and Theorem A in [31]):

Theorem 4.3 (Federico Lo Bianco). Let f : X → X be an automorphism of a
compact Kähler manifold X of dimension k = 3. Assume that the action of f ∗

on H2(X ,C) is unipotent; then, it has a unique Jordan block of maximal size `1
localized in H1,1(X ,C) and `1 ≤ 5. The other Jordan blocks in H2(X ,C) have
size ≤ `1+1

2 ≤ 3.

Since, by duality, the action of f ∗ on H2,2(X ;C) has Jordan blocks of the
same size, we obtain s1( f ) = s2( f )≤ 4, and thus hpol( f )≤ 3+2×4 = 11. We
want to improve this inequality to hpol( f ) ≤ 9, and for that we use one extra
ingredient from the proof of Lo Bianco’s result. Namely, we can find a basis
(u1, . . . ,u`1) for the maximal Jordan block of f ∗1 that satisfies
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(1) f ∗u1 = u1 and f ∗um = um+um−1 for any m = 2, . . . , l1 (normal form of
the Jordan block);

(2) u1∧u1 = u1∧u2 = 0 in H2,2(X ;C).
From this result, we can now estimate the volume of Γ(n):

Vol(Γ(n)) =
∫

X

(
n

∑
j=0

( f j)∗κ

)3

≤ 6
n

∑
i≤ j≤k=0

∫
X
( f i)∗κ∧ ( f j)∗κ∧ ( f k)∗κ;

since the topological degree of f is 1, we can set j = i+ t1 and k = i+ t2 to
obtain

Vol(Γ(n))≤ 6
n

∑
i=0

n−i

∑
t1=0

n−i

∑
t2=0

∫
X

κ∧ ( f t1)∗κ∧ ( f t2)∗κ.

Denote by `1 > `2 > ... the sizes of the Jordan blocks of f ∗ on H1,1(X ;C).
Then, represent the Kähler form κ as a linear combination of vectors κ =

∑
s1
i=1 αiui +∑

M2
m=1 ∑

s2
j=1 βm

i vm
i + . . .. Here M2 is the number of Jordan blocks

of size `2 and the vectors {vm
i }

s2
i=1 form a basis of the corresponding invariant

subspaces in H1,1(X ,C). Then write out the wedge product ( f t1)∗κ∧ ( f t2)∗κ:
since u1∧u1 = u1∧u2 = 0 and `2 ≤ 3, we see that the form ( f t1)∗κ∧ ( f t2)∗κ
is a polynomial P(t1, t2) in t1 and t2 with values in H2,2(X ,C) and of degree at
most 6. From this, we get an upper bound

VolΓ(n)≤
n

∑
i=0

n−i

∑
t1=0

n−i

∑
t2=0

∫
X

κ∧P6(t1, t2)≤C′n9

for some positive constant C′. This shows that an automorphism of a compact
Kähler manifold of dimension 3 has polynomial entropy ≤ 9 if its topological
entropy vanishes. This concludes the proof of Proposition 4.1.

4.3. A conjecture. We wonder whether the bound k2 is optimal in all dimen-
sions:

Question 4.1. Let f be an automorphism of a compact Kähler manifold X of
dimension k. If htop( f ) = 0 does it follow that hpol( f )≤ k2 ? Is such an upper
bound optimal, in every dimension k ?

The following proposition shows that this upper bound is satisfied for auto-
morphisms of tori. We provide a cohomological proof, and then give a second,
more precise statement in Proposition 4.6.

Proposition 4.4. If X is a complex torus of dimension k, and the automorphism
f : X → X satisfies htop( f ) = 0, then hpol( f )≤ k2.
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Proof. We fix a Kähler form κ, and we want to bound:

Vol(Γ(n)) =
∫

X

(
n

∑
j=0

( f j)∗κ

)k

(4.1)

=
n

∑
i=0

n−i

∑
t1=0

. . .
n−i

∑
tk−1=0

[κ]∧ ( f t1)∗[κ]∧ . . .∧ ( f tk−1)∗[κ]. (4.2)

The automorphism f is acting linearly on the complex torus X by a matrix A, its
action on H1,0(X ,C) is given by the transposed matrix At , and on H0,1(X ,C)

by the matrix Āt . If htop( f ) = 0 then f ∗ is (virtually) unipotent. Fix a basis
(u1, . . . ,uk) of H1,0(X ,C) in which At has a canonical Jordan form, and its
biggest Jordan block corresponds to the subspace generated by (u1, . . . ,u`1); in
particular `1 ≤ k. Writing [κ] = ∑m,n αm,num∧ ūn, we obtain

( f j)∗[κ] =
k

∑
m,n=0

αm,n pm−1( j)p̄n−1( j)um∧ ūn, (4.3)

where the αm,n are complex numbers and the pδ( j) are polynomial functions of
degree δ in the variable j. The maximal degree in the right-hand side of (4.3)
is 2(`1− 1). Since u j ∧ u j = 0 for all 1 ≤ j ≤ k, the sum in Equation (4.1) is
bounded by

Vol(Γ(n)) ≤C
n

∑
i=0

n−i

∑
t1=0

. . .
n−i

∑
tk−1=0

t2(`1−1)
1 t2(`1−2)

2 . . . t2·1
k−1 (4.4)

= Cn1+`1−1+ 2·`1(`1−1)
2 =Cn`

2
1 ≤Cnk2

(4.5)

for some C > 0. �

Let F be the element of SL k(Z) given by a Jordan block of size k, which
means that F(u1) = u1 and F(um) = um + um−1 for every 2 ≤ m ≤ k in the
canonical basis (u j) of Zk. This transformation induces a diffeomorphism of
the torus Rk/Zk (resp. of the torus (C/Λ)k for every elliptic curve C/Λ).

Lemma 4.5. The polynomial entropy of the diffeomorphism F : Rk/Zk→Rk/Zk

(resp. of C/Λ) is equal to k(k−1)/2 (resp. to k(k−1)).
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Proof of Lemma 4.5. First note that in the canonical basis (u j) the iterated map
Fn ∈ SLk(Z) is given by the k× k matrix of the form

1 Q1(n) Q2(n) . . . Qk−1(n)
0 1 Q1(n) . . . Qk−2(n)
0 0 1 . . . Qk−3(n)

. . .
0 0 0 . . . 1

 ,

where each Q j(n) is a polynomial function in the variable n such that Q j(n)≈
n j

j! up to lower degree terms. For simplicity, we set X := (R/Z)k and choose
the l∞ metric on X . Consider the following set of points Sn ⊂ X :

Sn :=
{

ε

k

(
i1,

i2
Q1(n)

, . . . ,
ik

Qk−1(n)

)
∈ X | i j ∈ Z,0≤ i j ≤

⌊
Q j−1(n)

k
ε

⌋}
.

Then,

|Sn|=
k

∏
j=1

(⌊
Q j−1(n)

k
ε

⌋
+1
)
≈
(

k
ε

)k 1

∏
k−1
j=1 j!

n1+2+...+(k−1),

where the last equivalence holds true up to the terms of lower order in n. This
set is λε-separated for any λ > 1, but not for λ ∈ [0,1]. The Bowen balls of
radius ε centered at the points of Sn cover X and, at the same time, all the points
in the set S belong to different Bowen balls of radius ε/2. Thus Covε(n)' |Sn|
and from definition from Equation (1.3) we get hpolF = 1+2+ . . .+(k−1) =
k(k−1)/2. �

Proposition 4.6. If X is a complex torus of dimension k, and f ∈ Aut(X) sat-
isfies htop f = 0, then hpol( f )≤ k(k−1).

Proof. Write X = Ck/Λ for some co-compact lattice Λ⊂Ck. There is a matrix
A∈GL k(C) and a vector B∈Ck such that f (z)=A(z)+B mod Λ. The Bowen
distance d f

n does not depend on B, so we assume B = 0 for simplicity. Since
htop( f ) = 0, we can replace f by a positive iterate to assume that the action of
f on H1(X ;R) is unipotent.

Consider Ck as a real vector space VR of dimension 2k; fixing a basis of Λ,
we identify Λ with the lattice Z2k ⊂ VR ' R2k and denote by VQ ' Q2k the
rational subspace Λ⊗Z Q. Since A is a unipotent endomorphism of VQ, there
is basis of VQ in which the matrix of A is a diagonal of Jordan blocks. Since
the endomorphism is induced by a C-linear transformation, the blocks come in
pairs of the same sizes, so that the list of sizes can be written k1 ≥ k2 ≥ k3 . . .
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with k2i+1 = k2i+2 for every i ≥ 0. Now, the proof of Lemma 4.5 and the
additivity hpol(g×h) = hpol(g)+hpol(h) give

hpol( f ) = ∑
i≥0

k2i+1(k2i+1−1). (4.6)

Since ∑ j k j = 2k and a(a− 1) + b(b− 1) ≤ (a + b)(a + b− 1) for positive
integers, we obtain hpol( f ) = k(k−1). �

Question 4.2. Let X be a complex Kähler surface, and let f : X → X be an
automorphism. If htop( f ) = 0, does it follow that hpol( f )≤ 2? Equivalently, if
f preserves a genus 1 fibration, does it follow that hpol( f ) = 2?

The equivalence between the two questions follows from the results of the
next section. We hope to answer this question in the final version of this draft,
and thus complete the study of the spectrum of polynomial entropy for auto-
morphisms of surfaces.

5. AUTOMORPHISMS OF SURFACES: CLASSIFICATION AND LOWER

BOUNDS

Let f be an automorphism of a compact kähler surface. The main goal of
this section if to prove that, if some iterate of f is in Aut(X)0, then hpol f ∈
{0,1,2}. To state a more precise result, we say that f has a wandering saddle
configuration if f has a saddle fixed point x, together with two open subsets
U 1 and U2 in X such that

(a) U 1∩U 2 = /0;
(b) f n(U i)∩Ui = /0 for i = 1,2 and all n 6= 0;
(c) U 1∩W s(x) 6= /0 and U 2∩W u(x) 6= /0,

where W s(x) and W u(x) denote the stable and unstable manifolds of x. See
Figure 5 for illustration.

Theorem 5.1. Let X be a compact kähler surface, and let f be an automor-
phism of X. If some positive iterate of f is in Aut(X)0, then hpol f ∈ {0,1,2}.
Moreover, hpol( f ) = 0 if and only if f preserves a kähler metric and hpol( f ) = 2
if and only if f has a wandering saddle configuration.

After proving this result, we shall give a general statement for all automor-
phisms of surfaces in Section 5.5

5.1. Preliminaries.
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FIGURE 1. Wandering saddle connection of a saddle fixed
point x.

5.1.1. Cohomological bound. A positive iterate of f is in Aut(X)0 if and only
if the sequence (deg( f n)) is bounded; in that case s1( f ) = s2( f ) = 0 and The-
orem 2.1 gives hpol( f )≤ 2. The following example shows that 0, 1, and 2 are
realizable. So, the main point is to prove that hpol( f ) ∈ Z when f ∈ Aut(X)0.

Example 5.2. An automorphism g ∈ PGL2(C) of P1(C) satisfies hpol(g) = 1,
except when g is (conjugate to) a rotation in which case hpol(g) = 0. Now, con-
sider the group of automorphisms of P1×P1; this group contains PGL 2(C)×
PGL 2(C) as a subgroup of index 2. By additivity of polynomial entropy for
products, we see that {0,1,2} is exactly the set of possible polynomial en-
tropies for automorphisms of P1×P1. In particular, the three values 0, 1, and
2 are already realized on P1×P1.

5.1.2. Compact groups and Kodaira dimension. Fix a kähler metric on X ,
given by a kähler form κ0. If f is contained in a compact subgroup K of
Aut(X), and µ is a Haar measure on K, the kähler form κ =

∫
K g∗κ0 dµ(g) is

f -invariant; in particular, f preserves a kähler metric if f has finite order.

Lemma 5.3. Let X be a compact kähler surface. If the Kodaira-dimension of
X is ≥ 0, the group Aut(X)0 is a compact Lie group.

This well known result shows that Aut(X)0 preserves a kähler metric when
kod(X) ≥ 0. Thus, in what follows, we assume that kod(X) = −∞, and we
separate two cases:

• Irrational, ruled surfaces are studied in Section 5.2
• Rational surfaces are studied in Sections 5.3 and 5.4.
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5.1.3. Two lemmas. We shall apply two basic lemmas. The first one is similar
to the study of twist maps in dimension 2 by Marco [32]. We say that a function
is holomorphic on the closed unit disk D if it is the restriction of a holomorphic
function defined on a slightly larger open disk.

Lemma 5.4. Let a : D→ C∗ be a holomorphic function that does not van-
ish. Let f be the transformation of D× P1(C) defined by f (x, [y0 : y1]) =

(x, [a(x)y0 : y1]). Then, hpol( f ) ∈ {0,1} and hpol( f ) = 0 if and only if a(x) = c
for some constant c ∈ C of modulus 1.

Let b : D→ C∗ be a holomorphic function. Let g be the transformation of
D×P1(C) defined by g(x, [y0 : y1]) = (x, [y0 + b(x)y1 : y1]). Then, hpol(g) ∈
{0,1} and hpol(g) = 0 if and only if g = Id.

Proof. The n-th iterate of g is gn(x, [y0 : y1]) = (x, [y0 + nb(x)y1 : y1]). For
p = (x, [y0 : y1]) and p′ = (x′, [y′0 : y′1]) in P1(C)\ [1 : 0], one can write Y := y0

y1
,

Y ′ := y′0
y′1

, and one gets

dist(gn(p),gn(p′)) = max
(∣∣x− x′

∣∣ , ∣∣Y −Y ′+n
(
b(x)−b(x′)

)∣∣) , (5.1)

where the distance dist on D×C is given by max(|x− x′|, |y− y′|). Moreover
|b(x)−b(x′)| ≤C|x−x′|, with C = max |b′(z)| for z ∈D. Since the distance on
D×P1(C) is bounded from above by the distance dist on D×C, we get the
upper bound hpol(g) ≤ 1. If b vanishes identically then g is the identity and
hpol(g) = 0; otherwise, there are wandering points and thus hpol(g) = 1.

Now, consider the map f . If a(x) = c for some constant of modulus 1,
then hpol( f ) = 0 since f is a product of isometries. Otherwise there is a point
x ∈ D for which |a(x)| 6= 1, almost all points (x, [y0 : y1]) are wandering, and
then hpol( f ) ≥ 1. For the upper bound, one remarks that there is a continous
conjugacy between f and a transformation f0 of D×P1(C), the derivative of
which satisfies ‖ D( f n

0 ) ‖≤ |n|. Indeed, if h is a transformation of the sphere
with a north-south dynamics, one can conjugate it to a new transformation h0
which is infinitely tangent to the identity at each pole, and if h is close to a
rotation in the C 0-topology, so is h0. �

Our second lemma is essentially due to Hauseux and Le Roux.

Lemma 5.5. Let f be an automorphism of a complex surface with a wandering
saddle configuration. Then hpol( f ) ≥ 2, and hpol( f ) = 2 if f is an element of
Aut(X)0.
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Sketch of proof. Take a point x1 in U 1 ∩W s(x) and a point x2 in W u(x). Fix
ε > 0 such that, for i ∈ {1,2}, the ball of radius ε centered at xi is contained
in Ui and is at distance > ε from the complement of U i. If ε is small enough,
these balls are wandering. If ` is large enough, one can find a point z` in
B(x1,ε) whose orbit f n(z`) stays in the complement of the two balls except for
f 0(z`) ∈ B(x1,ε) and f `(z`) ∈ B(x2,ε). Then, the points f− j(z`) for j ≤ n and
`≤ n/2 are (ε/2,n)-separated (see [18], Example 2); the size of this set grows
quadratically with n, hence hpol( f )≥ 2. The equality follows from hpol( f )≤ 2
when f ∈ Aut(X)0 (see § 5.1.1). �

5.2. Irrational, ruled surfaces. In this section, X is a ruled surface, but X is
not rational. This means that there is a fibration π : X → B onto a base B of
genus ≥ 1 with generic fiber P1. This fibration is equivariant with respect to
f : X → X and an automorphism fB : B→ B.

5.2.1. Assume, first, that fB is periodic. Since the polynomial entropy does
not change if one replace f by some positive iterate, we may as well suppose
that fB = IdB. The following lemma does not require that the genus of B be
positive.

Lemma 5.6. Let π : X → B be a ruled surface, and let f be an automorphism
of X preserving each fiber. Then hpol( f ) ∈ {0,1,2}, hpol( f ) = 0 if and only if
f preserves a kähler form, and hpol( f ) = 2 if and only if f has a wandering
saddle configuration.

Sketch of Proof. First, assume that every fiber of π is a smooth rational curve.
Then, the fibration is locally trivial: locally (X ,π) is biholomorphically equiv-
alent to (D×P1(C),π1). Using coordinates (x, [y0 : y1]) on D×P1(C), the au-
tomorphism f can be written f (x, [y0 : y1]) = (x,Ax[y0 : y1]) for some holomor-
phic map x ∈ D 7→ Ax ∈ Aut(P1(C)). Lemma 5.4 shows that hpol( f ) ∈ {0,1},
with hpol( f ) = 0 if and only if Ax does not depend on x and is an isometry.
Gluing the local charts, one sees that the same result holds globally for f on X .

Now, if X has singular fibers, X is not relatively minimal: it comes from a
minimal model X0 by blowing up (a finite sequence of) points, and f comes
from an automorphism f0 of X0 acting trivially on B. Two cases may appear.
One of the blow-ups creates a wandering saddle configuration: this occurs if
one blows up a fixed point q at which D fq has an eigenvalue α of modulus 6= 1.
In that case hpol( f ) = 2. Otherwise, hpol( f ) ∈ {0,1}, and hpol( f ) = 0 if and
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only if its iterates are contained in a compact group (a property that does not
change from f0 to f ). �

5.2.2. Now assume that fB has infinite order. Then, since g(B) ≥ 1, we know
that B is an elliptic curve. In that case, f is the flow, at time t = 1, of some
holomorphic vector field on X that is transverse to the fibration π. All orbits of
f are infinite, and in particular all fibers of π are smooth. The fibration falls in
one of the following four types.

Example 5.7. Up to a finite base change, X is just the product B×P1(C) and
f (x,y) = (x+ τ,A(y)) for some translation τ and some homography A.

Example 5.8. There are two sections σ0 and σ∞ of the fibration. If one removes
them, the complement is isomorphic to the quotient of C∗×C∗ by the action
of a cyclic subgroup, acting by (x,y) 7→ (λx,µy), with |λ|< 1 and B = C∗/〈λ〉.
The action of f on X lifts to a diagonal transformation F(x,y) = (αx,βy) on
C∗×C∗.

Example 5.9. There is a unique section, when one removes it, the complement
is isomorphic to the quotient of C∗×C by (x,y) 7→ (λx,y+ 1) and f lifts to
F(x,y) = (αx,y+β).

Example 5.10. There is no section, but there is one double section. This case
reduces to the previous ones by a finite base change.

One easily gets the following result.

Lemma 5.11. Either f is contained in a compact subgroup K of Aut(X)0, or
the α and ω-limit set of every orbit is contained in a section of π; in that case,
hpol( f ) = 1.

5.3. Linear case. Before studying rational surfaces in full generality, we fo-
cus on the linear projective case, i.e. automorphisms of the plane P2(C).

Proposition 5.12. Let g be an element of PGL 3(C) = Aut(P2(C)). Then
hpol(g) ∈ {0,1,2}. More precisely, the following classification holds:

(1) hpol(g) = 0 if and only if g is an isometry;
(2) hpol(g) = 2 if and only if g has a wandering saddle configuration, if

and only if g is conjugated toλ 0 0
0 µ 0
0 0 1

 or

1 1 0
0 1 0
0 0 ν

 (5.2)
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with |λ|> 1 > |µ| and |ν| 6= 1.
(3) hpol(g) = 1 and g is conjugated1 0 0

0 α 0
0 0 ν

 or

β 1 0
0 β 1
0 0 1

 .

with |ν| 6= 1 and |α|= |β|= 1.

Proof. Our goal is to prove the proposition, but also to introduce two technics:
the blow up of fixed points, and the symbolic coding of Hauseux and Le Roux.
Denote by [x : y : z] the homogeneous coordinates of the plane.

The first step is to show that every linear projective transformation g ∈
Aut(P2(C)) is contained in one of the mentionned conjugacy classes. This
is classical. Then, when g falls in case (1) it preserves a kähler metric, and its
polynomial entropy vanishes. When g falls in case (2), one verifies that g has
a wandering saddle configuration: in the diagonal case, on can take the fixed
point q = [0 : 0 : 1] and the stable and unstable varieties {y = 0} and {x = 0}; in
the second case one can take q = [0 : 1 : 0] and the stable and unstable variety
{z = 0} and {x = 0} (assuming |ν|< 1).

Let us now look at case (3). First, assume that g is (conjugate to) a diagonal
transformations with eigenvalues 1, α and ν with |α| = 1 < ν, i.e. g(x,y) =
(1

ν
x, α

ν
y) in affine coordinates (x,y). Blow up the fixed point [0 : 0 : 1] to get a

new surface X on which g lifts to an automorphism gX : the surface X fibers on
P1(C) (each fiber is the strict transform of a line through [0 : 0 : 1], the action
of gX preserves this ruling, it acts by a rotation w 7→ αw on the base, and as
a loxodromic isometry in the fibers. One easily verifies (as for a product) that
hpol(gX)= 1. Since g has a wandering point we obtain 1≤ hpol(g)≤ hpol(gX)=

1, hence hpol(g) = 1.
Assume now that g is (conjugate to) the Jordan block in case (3). Then g has

a unique fixed point q = [1 : 0 : 0] and all other points are wandering (their α

and ω limit sets coincide with {q}). This setting has been studied by Hauseux
and Le Roux in [18] and we can directly apply their result. Let X0 be the
complement of the fixed point q.

Let F = {F1, . . .Fk} be a finite family of non-empty subsets of X0. Let F∞ be
the complement of ∪Fi∈F Fi. To each orbit (gn(x)), one associates its possible
coding, i.e. the sequences of indices i(n) ∈ {1, . . . ,k,∞} such that gn(x) ∈ Fi(n)
for all n∈Z (the coding is not unique since the Fi may overlap). Let Cod(N) be
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FIGURE 2. The dynamics of the maps described by the matri-
ces in the point (2) of Proposition 5.12 is represented schemat-
ically. In both cases the singular sets giving the maximal local
entropy contain two points on the separatrices of fixed points,
S = {s1,s2}, and the times of passage from the neighbourhood
of s1 to the neighbourhood of s2 can be arbitrary big.

the number of codes of length N which are realized by orbits of g; the polyno-
mial degree growth of Cod(N) is denoted hpol( f ;F ). Then, one can define the
local polynomial entropy of g at a finite subset S ⊂ X0 as the limit of a (de-
creasing) sequence hpol( f ;U(S)) where U(S) is the collection of open neigh-
borhoods of points in S of decreasing size (see [18]). This number is denoted
by hpol

loc( f ;S). One says that subsets U1, . . . ,UL⊂X0 are mutually singular if
for every M there exists a point x ∈ X and times n1, . . . ,nL such that gni(x) ∈Ui

for any i and |ni−n j|> M for every i 6= j. A finite set {s1, . . . ,sn} ∈ X0 is sin-
gular if all small enough neighborhoods U1, . . . ,UL of s1, . . . ,sL respectively
are mutually singular. Any singleton is a singular set. Hauseux and Le Roux
prove that hpol( f ) can be calculated as a following supremum:

hpol(g) = sup
{

hpol
loc( f ;S) | S is a singular set

}
. (5.3)

Now, in the example of the Jordan block, one sees that every singular set is
reduced to a singleton (one can, for instance, take a point that is not fixed on
the unique g-invariant line). This shows that hpol(g) = 1. �

Remark 5.13. Note that the Proposition 5.12, and its proof can be repeated
word by word for PGL 3(R).

5.4. Rational surfaces. To prove Theorem 5.1 it remains to study rational
surfaces which are not isomorphic to the projective plane. First, we study min-
imal, rational surfaces and then we look at how polynomial entropy changes
under blow-ups and use the following
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Lemma 5.14. Let X ,Y be complex Kähler manifolds, f ∈ Aut(Y ),g ∈ Aut(X)

and the projection π : Y → X is such that π is 1 to 1 everywhere except for q
and that π−1 blows up q, a fixed point of g and π−1(q) = K is a compact in Y.
Suppose that π◦ f = g◦π and that f |K is an isometry on K and that htop( f ) = 0.
Then hpol( f ) = hpol(g).

5.4.1. Minimal rational surfaces. Let X be a minimal rational surface, and
assume that X is not the projective plane. When X is isomorphic to P1×P1,
we know from Example 5.2 that the conclusion of Theorem 5.1 is satisfied.
Thus, we assume that X is not isomorphic to P1(C)×P1(C) or P2(C). Then,
there is a unique ruling π : X → P1(C) invariant under the action of Aut(X),
with a unique section C ⊂ X , of negative self intersection.

Consider the automorphism fB of the base B = P1(C) of the ruling that is
induced by f . By Lemma 5.6 we may assume that fB is not the identity, hence
it is either elliptic, parabolic, loxodromic. Take homogeneous coordinates on B
such that the fixed point are {0,∞} or {0} if fB is parabolic. One can trivialize
the fibration above a neighborhood U of 0 in such a way that C corresponds to
the points at infinity in the fiber and f (x,y)= ( fB(x),y+q(x)) for some rational
function q(x). If there is a wandering saddle configuration, hpol( f ) = 2. If not,
we see that fB is elliptic or q(0) = 0 (and similarly q(∞) = 0). In the first case,
it is easy to see that hpol( f ) = 1 except when q vanishes identically in which
case f is contained in a compact group and hpol( f ) = 0. In the second case,
one also get hpol( f ) = 1 (every orbit converges towards a fixed point above 0
or ∞ along an f -invariant algebraic curve).

5.4.2. Non minimal rational surfaces. There is a minimal rational surface X0,
an automorphism f0 of X0 and a birational morphism τ : X → X0 such that
τ ◦ f = f0 ◦ τ. The inverse mapping τ−1 blows up fixed points of f0. If one
blows up a point q such that D fq has two eigenvalues of distinct moduli, one
finds a wandering saddle configuration and hpol( f ) = 2 (and hence, the entropy
can possibly grow by blow-up). If not, hpol( f ) = hpol( f0).

This concludes the proof of Theorem 5.1.

5.5. Polynomial entropy for surfaces.

5.5.1. Hodge decomposition. Fix a Kähler form κ on X , and denote by [κ] ∈
H2(X ;R) its cohomology class. First, recall the Hodge decomposition

Hn(X ,C)∼=
⊕

p+q=n
H p,q(X ,C) (5.4)
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where H p,q(X ,C) is the subspace of cohomology classes of type (p,q). This
decomposition is invariant under the action of Aut(X). Moreover, κ determines
an intersection form Qκ on H2(X ,R):

Qκ([α], [β]) = [α]∪ [β]∪ [κ]k−2 =
∫

X
α∧β∧κ

k−2. (5.5)

Theorem 5.15 (Hodge index theorem). The restriction to H1,1(X ,C) of the
Hermitian product

Qκ : H2(X ,C)×H2(X ,C)→ C

([α], [β]) 7→
∫

X
α∧ β̄∧κ

k−2

associated to the intersection form Qκ has signature (1,h1,1(X)− 1) where
h1,1(X) = dimH1,1(X ,C). The restriction of this Hermitian product Qκ to
H2,0(X ,C)⊕H0,2(X ,C) is positive definite.

5.5.2. Surfaces. Assume that X is a surface: k = 2, and Qκ is denoted Q be-
cause it does not depend on κ; the signature of Q on H1,1(X ;R) being equal to
(1,h1,1(X)− 1), it determines a structure of Minkowski space on H1,1(X ;R).
The classification of isometries of Minkowski spaces and the geometry of sur-
faces lead to the following three cases (see [7]):

(1) f ∗ is an elliptic isometry of H1,1(X ;R), and then there exists a positive
iterate f m of f such that f m ∈ Aut(X)0. In particular, there is a holo-
morphic vector field θ on X such that f m is the flow, at time 1, obtained
by integrating θ: f m(x) = Φθ(1,x).

(2) f ∗ is a parabolic isometry of H1,1(X ;R). In that case, there exists a
fibration π : X → B onto a Riemann surface B whose generic fibers are
connected and of genus 1, which is invariant under the action of f :
there is an automorphism fB of B such that π ◦ f = fB ◦π. Moreover,
the growth of ( f n)∗ on H1,1(X ;R) is quadratic: ‖ ( f n)∗ ‖≈ Cn2 for
some positive constant C.

(3) f ∗ is a loxodromic isometry of H1,1(X ;R), f ∗ has a unique eigenvalue
of modulus > 1 on H∗(X ;C), this eigenvalue coincides with λ( f ), and
it is realized on H1,1(X ;R). The topological entropy of f is positive,
and equal to log(λ( f )).

Moreover, in the loxodromic case, f : X → X has infinitely many saddle
periodic points, and these periodic points equidistribute towards the unique f -
invariant probability measure of maximal entropy (see [5, 7, 14]).
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Theorem 5.16. Let f be an automorphism of a compact Kähler surface. If f ∗

is elliptic, hpol( f ) ∈ {0,1,2}. If f ∗ is parabolic, then hpol( f ) ∈ [2,4] and is at
most 4. If f ∗ is loxodromic, hpol( f ) = ∞ since htop( f ) = log(λ( f )) is positive.

Proof. The first statement is a consequence of Theorem 5.1.
We know from Gromov’s upper bound that hpol( f )≤ 4 when f is parabolic.

(see Section 4.1) Also, in that case, f preserves a fibration π : X→ B by curves
of genus 1 (except finitely many singular fibers). If the action on the base fB ∈
Aut(B) has finite order, we can assume fB = Id. Then, if b∈B is a regular value
of π, there is a local C ∞ change of coordinates near π−1(b) that conjugates f to
a twist map (x1,x2,y1,y2) 7→ (x1,x2,y1+ t1(x1,x2),y2+ t2(x1,x2)) with (y1,y2)

in the torus R2/Z2; moreover, (x1,x2) 7→ (t1, t2) is locally dominant (see [6]).
This implies that the polynomial entropy of f in this invariant neighborhood
of π−1(b) is 2. If the action on the base has infinite order then f is an affine
transformation of a complex torus whose linear part is parabolic and hpol( f ) =
2 (see [7]). �
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Part III.– Minimal actions and Zariski dense orbits, the surface case.

6. AUTOMORPHISMS WITH NO FINITE ORBITS

In this section, we classify automorphisms of surfaces satisfying one of the
following properties

• all orbits of f are infinite, i.e. f : X → X has no finite orbit;
• all orbits of f are Zariski dense;
• all orbits of f are dense for the euclidean topology.

Those properties are listed from the weakest to the strongest: euclidean den-
sity implies Zariski density, which in turn excludes the existence of periodic
orbit. The last property is exactly the notion of minimality (with respect to the
euclidean topology).

6.1. Automorphisms with no finite orbits.

6.1.1. The Lefschetz formula and the Albanese morphism. Let f be an auto-
morphism of a compact Kähler surface without periodic orbits.

Lemma 6.1. The action of f on the cohomology of X is virtually unipotent.

Proof. If there is an eigenvalue λ ∈ C of f ∗ with |λ| > 1, we know from [7]
that this eigenvalue is unique and has multiplicity 1. Thus, the alternating sum
of the traces of ( f n)∗ on the cohomology groups Hk(X ;R) grows like λn, and
the Lefschetz formula shows that f has at least one finite orbit (in fact it has
infinitely many saddle periodic points, see [7]). We deduce that all eigenvalues
of f ∗ have modulus≤ 1. Since f ∗ preserves the integral cohomology H∗(X ;Z),
its eigenvalues are algebraic integers, and Kronecker lemma shows that they are
roots of unity. We deduce that some positive iterate ( f n)∗ is unipotent. �

Now, choose n > 0 such that ( f n)∗ is unipotent; since f n has no fixed point,
the holomorphic Lefschetz formula gives h2,0(X)−h1,0 +1 = 0 (see [7]):

Lemma 6.2. If there is an automorphism of X without periodic orbit, then X
satisfies

h1,0(X) = h2,0(X)+1.

In particular, there are non-trivial holomorphic 1-forms on the surface X, and
X is not a rational surface.
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Since h1,0(X) is positive, the Albanese map determines a non-trivial mor-
phism αX : X → AX , where AX = H0(X ,Ω1

X)/H1(X ;Z) is the Albanese torus.
This map is equivariant with respect to the action of f on X , and its induced
action falb : AX → AX ; this means that falb ◦αX = αX ◦ f .

6.1.2. Invariant genus 1 pencil. Suppose that f ∗ is unipotent and not equal
to the identity. Then f is parabolic and preserves a unique genus 1 fibration
π : X → B onto some Riemann surface B; this means that there is an automor-
phism fB of B such that fB ◦π = π◦ f (see Section 5.5.2). Moreover, either fB

is periodic, or the surface X is a torus (see [7]). In particular, if all orbits of f
are Zariski dense, then X must be a torus.

Assume that fB is periodic, and replace f by f n where n is the order of f on
the base. Given b ∈ B, f preserves the fiber Xb = π−1(b). If Xb is not a smooth
curve of genus 1, then there is a periodic orbit of f in Xb. Thus, if all orbits of
f are infinite, then all fibers of π : X → B are smooth curves of genus 1 (some
of them may a priori be multiple fibers).

6.1.3. Tori and bi-elliptic surfaces. We consider two special cases, namely

(1) the minimal model of X is a torus;
(2) the minimal model of X is a bi-elliptic surface.

Let π : X → X0 be the birational morphism onto the minimal model X0 of X .
The exceptional divisor of π coincides with the vanishing locus of all holomor-
phic 2-forms of X . This implies that f preserves this divisor, and some iterate
f n fixes each of its irreducible components. Those components being ratio-
nal curves, f n has a fixed point on each of them, contradicting the absence of
periodic orbits. Thus, X coincides with X0.

If X is a bi-elliptic surface, it is the quotient of an abelian surface A = B×C,
where B and C are two elliptic curves, by a finite group G acting diagonally on
A: the action on B is by translation x 7→ x+ε, and the action on C is of the form

y 7→ ωy+η , (6.1)

where ω is a root of 1 of order 2, 4, 3 or 6. The automorphism f of X lifts
to an automorphism f̃ of the universal cover C2; here C2 = C×C, with co-
ordinates (x,y), and the elliptic curves B and C are the quotients of the x-axis
and the y-axis by lattices ΛB and ΛC. Write f̃ (x,y) = L(x,y)+(a,b) for some
linear transformation L∈GL2(C). Since f̃ covers f , the linear map normalizes
the linear part (x,y) 7→ (x,ωy) of G. Thus, L is a diagonal matrix. But from
Lemma 6.1, it is also virtually unipotent. We deduce that Ln = Id for some
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n > 0. Changing f in f kn for some k > 0, we may assume that f is covered by
a translation that commutes to the linear part of G. Thus, some positive iterate
f m of f is covered by a translation of type (x,y) 7→ (x+a,y). This proves the
following lemma.

Lemma 6.3. Let f be an automorphism of a complex projective surface X
with no finite orbit. If the minimal model of X is bi-elliptic, then X coincides
with its minimal model, and a positive iterate of f is covered by a translation
(x,y) 7→ (x+ a,y) of a product B×C of two elliptic curves. In particular, the
Zariski closure of each orbit is a curve of genus 1.

Let us now study the case of tori.

Example 6.4. Let f be a translation on a 2-dimensional compact torus X =

C2/Λ, and let M be the closure of the orbit of the neutral element (0,0) ∈ X .
Then M is a real Lie subgroup of X ; its connected component of the identity is
a real torus M0 ⊂ X . The orbit { f n(x);n ∈ Z} of any point x ∈ X is dense in
x+M.

Thus, on every compact torus, there are examples of translations whose or-
bits are Zariski dense but not dense for the euclidean topology.

Example 6.5 (Furstenberg [15]). Consider a 2-dimensional torus X which is
the product of two copies of the same elliptic curve E; write E = C/Λ and
X = C2/(Λ×Λ) for some lattice Λ⊂ C. Then, consider the automorphism

f (x,y) = (x+a,y+ x+b) (6.2)

for some pair of elements (a,b)∈E×E. Assume that a is totally irrational with
respect to C, i.e. x 7→ x+ a has dense orbits in E for the euclidean topology.
Then, all orbits of f are dense for the euclidean topology.

Lemma 6.6. There are examples of automorphisms f on abelian surfaces such
that

• f is elliptic, all orbits of f are Zariski dense, but no orbit is dense for
the euclidean topology;
• f is elliptic and all orbits of f are dense for the euclidean topology;
• f is parabolic, and all orbits of f are dense for the euclidean topology.

If f is an automorphism of an abelian surface with no finite orbit, then the
following are equivalent

• one orbit of f is dense for the Zariski topology (resp. for the euclidean
topology);
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• every orbit of f is dense for the Zariski topology (resp. for the eu-
clidean topology);

Proof. We only have to prove the second assertion. So, assume that there is an
orbit of f that is dense for the euclidean topology; we want to prove that all
orbits are dense. If some positive iterate of f is a translation, this is easy. If
not, f is parabolic, and we may assume that x = E×E, with

f (x,y) = (x+a,y+ kx) (6.3)

for some k≥ 1. Then, x 7→ x+a has dense orbits. If there is one orbit which is
not dense, then there is a non-trivial minimal invariant subset M in E×E. But
this is impossible by Furstenberg’s results.

Now, assume that there is an orbit of f that is dense for the Zariski topology,
and that f is parabolic. Again, X = E×E, and we can assume that f is as in
Equation (6.3), with x 7→ x+a a translation of infinite order. If the orbit of (x,y)
is not Zariski dense, then its Zariski closure is an f -invariant curve C ⊂ E×E,
on which f induces an automorphism of infinite order. Thus, C is a curve of
genus 1, embedded in an f -invariant way into E×E. But then, the translates of
C form an f -invariant pencil, and since f is parabolic, this pencil must coincide
with the unique f -invariant fibration (x,y) 7→ x. We get a contradiction because
a is not a torsion point of E. �

6.1.4. Ruled surfaces (first step). Let us now assume that the Kodaira dimen-
sion of X is −∞. The Albanese map provides a fibration αX : X → AX , where
AX = C/Λ is a curve of genus 1. The automorphism f induces an automor-
phism falb of AX . If f n

alb(x) = x for some m > 0, the fiber α
−1
X (x) is a curve

of genus 0 (it may be singular), and f m must fix a point in this fiber. Thus,
the absence of finite orbit for f implies that all orbits of falb are infinite, and
falb is a translation of AX with Zariski dense orbits. As a consequence, αX is
a submersion and X is a fiber bundle over AX with rational fibers. The action
of f ∗ on H1,1(X ;R) can not be parabolic, because in that case f preserves a
unique fibration and this fibration is by curves of genus 1. Thus, some positive
iterate of f is an element of Aut(X)0: there is a holomorphic vector field θ on
X and f is the flow of θ at time t = 1. This flow must permute the fibers of αX

and it is transverse to the fibration.

Lemma 6.7. Let f be an automorphism of a complex projective surface with-
out finite orbits. If kod(X) is negative the albanese map αX : X → AX is a
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submersion onto an elliptic curve whose fibers are rational curves. Some pos-
itive iterate f m of f is the flow, at time 1, of a vector field which is everywhere
transverse to the fibration.

Consider the monodromy of the foliation induced by this vector field: it
gives a representation of π1(AX ;x) into Aut(α−1

X (x)), i.e. into the group PGL2(C)

of automorphisms of P1. Since π(AX ;x) ' Z2, the monodromy group has a
fixed point p. The orbit of p under the flow of θ is a section of the fibration and
is invariant under the action of f m. Thus at least one orbit of f m is contained,
and Zariski dense, in an elliptic curve.

6.1.5. Zariski dense orbits.

Theorem 6.8. Let f be an automorphism of a compact Kähler surface. If
all orbits of f are Zariski dense, then X is a torus, and on every torus there
are translations whose orbits are Zariski dense (resp. dense for the euclidean
topology).

Proof. If the Kodaira dimension of X is non-negative, some positive multiple
mKX of the canonical bundle has non-trivial sections. Fix such a multiple, and
consider the action of f on the space of sections H0(X ;mKX). The existence
of an eigenvector provides a section ω of mKX such that f ∗ω = ξω for some
ξ∈C∗. In particular, the vanishing locus of ω is either empty, or an f -invariant
curve. Since all orbits of f are Zariski dense, f does not preserve any curve
and ω does not vanish: this proves that mKX is the trivial bundle and that
kod(X) = 0.

If the Kodaira dimension of X is negative, Lemma 6.7 shows that f has an
orbit which is contained in a finite union of curves of genus 1, contradicting
our hypothesis. Thus kod(X) = 0.

Now, since kod(X)= 0 and h1,0(X)> 0 (see Lemma 6.2), the minimal model
of X is a torus or a bi-elliptic surface, and we conclude with Lemma 6.3. �

6.1.6. Ruled surfaces (second step). Let us come back to the study of ruled
surfaces αX : X → AX with an automorphism f whose orbits are all infinite.
According to Section 6.1.4, we can assume that f ∈ Aut(X)0 and f is the flow
of a vector field θ that is transverse to the fibration αX .

To simplify the notation, denote by G the group Aut(X)0. By the universal
property of the Albanese morphism, there is an αX -equivariant action of G on
AX ; and this action factors through the Abanese torus, via a homomorphism
AG→ AX . Since the flow Φt

θ
provides a non-trivial flow on AX , we deduce that
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G acts transitively on AX . If dim(G)≥ 2 the dimension of the kernel H of the
homomorphism G→ AX is positive, H has positive dimensional orbits in the
fibers of αX , and X is almost homogeneous: the group G has an open orbit (for
the Zariski topology). We shall study this case below.

If dim(G) = 1 then G is isogeneous to AX : G is an elliptic curve, and there is
a homomorphism G→ AX whose kernel F ⊂G is finite; moreover, the general
orbit of G in X is isomorphic to G, and the action of F on the base AX of αX

is trivial. Moreover, a theorem of Nishi and Matsumura asserts that X is iso-
morphic to a suspension G×F P1

C, where F acts on P1
C via the homomorphism

ρ : F→ PGL2(C) giving the action of F on the fibers of αX . Since F is a finite
abelian group, ρ(F) is a finite, cyclic, diagonalizable subgroup of PGL2(C);
we can write ρ(a)[x : y] = [ξ(a)x : y] where ξ(a) is a root of unity that depends
on a ∈ F . In these coordinates X is the quotient of G×P1

C by the action

(z, [x : y]) ∈ G×P1
C 7→ (z+a, [ξ(a) : y]) (6.4)

of the finite group F ⊂G. But then, the transformations (z, [x : y]) 7→ (z+s, [µx :
y]) commute to the action of F for every pair (s,µ) ∈ G×C∗, and they induce
a group of automorphisms of dimension ≥ 2 on X , contradicting dim(G) = 1.
Thus, dim(G)≥ 2 and X is almost homogeneous.

To complete our study, we now rely on Section 3 of [35] (namely the con-
structions on pages 251–253). Since X is a ruled, almost homogeneous surface,
X is a topologically trivial P1

C-bundle over the elliptic curve AX , and there are
two types of such bundles:

(a) X is the quotient of C∗×P1
C by the automorphism (z, [x : y]) 7→ (λz, [µx :

y]) for some pair (λ,µ) of complex numbers with λµ 6= 0 and |λ|< 1.
(b) X is the quotient of C∗×P1

C by the automorphism (z, [x : y]) 7→ (λz, [x+
y : y]) for some complex number λ with |λ|< 1.

Case (a) correspond in fact to two subcases. If µ is equal to 1, then X is just
the product AX ×P1

C, and then every automoorphism is of the form f : (z, [x :
y]) 7→ (u(z),v[x : y]) where u is an automorphism of AX and v is an element of
PGL2(C). No orbit of f is dense for the euclidean topology; the general orbit
of f is Zariski dense if and only if u and v are two automorphisms of infinite
order. If µ is a root of unity, the same result holds. Then, assume that µ is
not a root of unity. Using affine coordinates x = [x : 1] for P1

C, one sees that
every automorphism of X comes from an automorphism of C∗×C∗ of type
(z,x) 7→ (αz,βx) or (αz−1,βx) for some pair of complex numbers (α,β) with
αβ 6= 0. Changing f in f 2 we assume that f (z,x) = (αz,βx). Then, the general
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orbit of f is Zariski dense; indeed, the action of f on AX has infinite order
because otherwise f has a periodic orbit, if the Zariski closure of a general
orbit is not X , then it is a multi-section of the fibration αX , but there are only
two such multi-sections. A point (z0,x0) has a dense orbit for the euclidean
topology if and only if for every point (z1,x1) and every ε> 0, there are integers
m and n such that (αnz0,β

nx0) is ε-close to (λmz1,µmx1) in C∗×C∗. Taking
logarithms, this means that the vectors (ln(α), ln(β)), (log(λ), log(µ)), (2iπ,0),
and (0,2iπ) generate a dense subgroup of C×C, which of course is impossible
since the rank of this group is at most 4. This argument shows that in case (a),
there is no automorphism with a dense orbit for the euclidean topology.

In case (b), every automorphism of X can be written (z,x) 7→ (αz,x+ β)

and, again, the general orbit of f is Zariski dense, but no orbit is dense for the
euclidean topology.

6.1.7. Conclusion.

Theorem 6.9. Let f be an automorphism of a compact Kähler surface X, all of
whose orbits are infinite. Replacing f by some positive iterate, there are only
three possibilities:

(1) kod(X) = 1, X is a fibration over a curve B with smooth fibers of genus
1 (some of them can be multiple fibers), and every orbit of f is Zariski
dense in such a fiber.

(2) kod(X) = 0, and X is a torus or X is a bi-elliptic surface. If X is bi-
elliptic, then the Zariski closure of every orbit is a curve of genus 1. If
X is a torus, an orbit is dense for the Zariski (resp. for the euclidean)
topology if and only if all orbits are dense for this topology.

(3) kod(X) =−∞, then X is a ruled surface over an elliptic curve, at least
one orbit is contained, and dense, in an elliptic curve (a section of the
ruling), but no orbit is dense for the euclidean topology. Either X is
isomorphic to the quotient of C∗×P1

C by (z, [x : y]) 7→ (λz, [ξx : y]) with
0 < |λ| < 1 and ξ a root of unity, an iterate of f is of the form (z, [x :
y]) 7→ (αz, [βx : y]) with β a root of unity; in this situation the general
orbit is dense along a multi-section of the fibration αX . Otherwise, the
general orbits of f are dense in X.

Proof. All we have to do, is put together the previous results of this section
together with Enriques-Kodaira classification of surfaces. First, if the Kodaira
dimension of a projective variety is maximal, its group of automorphisms is
finite. Thus, we can assume kod(X)≤ 1.
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Assume that kod(X) = 1. The action of f on the base of the Kodaira-Iitaka
fibration is periodic (see [37]). Since every orbit of f is infinite, every fiber of
this fibration is a smooth curve of genus 1, and every orbit is dense in such a
fiber.

When kod(X) = 0, we know that X must be a minimal surface, and that
h1,0(X) ≥ 1. Thus, X is a torus or a bi-elliptic surface. Then, we refer to
Lemma 6.3 and Lemma 6.6.

When kod(X) = −∞, we know from Section 6.1.4 that X is a ruled surface
over an elliptic curve, and the conclusion follows from Section 6.1.6. �

6.2. Open questions. We wonder if the result of Theorem 6.8 can be general-
ized to higher dimensions.

Question 6.1. Let f be an automorphism of a complex projective manifold X
of dimension 3 (or more) acting minimally on X . Is X automatically a torus ?

Consider the real manifold M = SO 3(R), of dimension 3, and pick a free
group F2 of rank 2 in SO 3(R); then, F2 acts freely on M (by translations).

Question 6.2. Does there exist a complex projective manifold X of dimension
3 and a free subgroup of rank 2 in Aut(X) acting freely on X ?
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Part IV.– Small entropy and degree growth

7. SMALL ENTROPY: GENERAL FACTS

In this section we gather a few remarks and examples concerning homeo-
morphisms of compact spaces with small polynomial entropy.

7.1. Recurrence properties.

Lemma 7.1. Let f be a homeomorphism of a compact metric space X.
(1) If hpol( f )< 1, then for every ε> 0, there exists k > 0 such that for every

x ∈ X there is a time j ≤ k with dist(x, f j(x))≤ ε.
(2) If the polynomial entropy of f is < 1, all points of X are recurrent, none

of them is wandering.
(3) If the polynomial entropy of f is < 1/2, then limsupdist( f n(x), f n(y))≥

dist(x,y)/2 for every pair of points (x,y) in X×X.

Proof. The first part, due to [1, Prop. 2.1], is obtained as follows. Suppose
there is ε > 0, such that for all k > 0 one can find a point y with dist(y, f j(y))>
ε for all 1 ≤ j ≤ k. Set x j = f j(y) for 0 ≤ j ≤ k. Then, for the dynamics of
f−1, the points x j are (ε,k)-separated, because if j < j′ the distance between
f− j(x j) = y and f− j(x j′) = x j′− j is greater than ε. Thus, hpol( f )≥ 1.

The second assertion is a consequence of the first. The third follows from
the second one, applied to f × f . �

Remark 7.2. A point x ∈ X is uniformly recurrent for a homeomorphism f :
X→X of a compact metric space if for any ε> 0 there exists N(ε) such that for
any n ∈ N among any succesive iterates f n+k(x),k = 0, . . . ,N−1, there exists
at least one such that d(x, f n+k(x))< ε. Lemma 7.1 does not say that all points
are uniformly recurrent.

7.2. Growth of derivatives.

Lemma 7.3. Let f be a homeomorphism of a compact manifold X. Denote by
Lip f (n) the maximum of the lipschitz constants of Id, f , . . ., f n−1 (Lip f (n) is
infinite if f is not lipschitz). Then, X is covered by Oε(Lipn( f )dim(X)) balls of
radius ≤ ε for the iterated metric distn. If Lip(n) ≤ nα for some α > 0, then
hpol( f )≤ αdim(X); if Lip(n) = o(nα) for all α > 0, then hpol( f ) = 0.

Proof. If x and y satisfy dist(x,y) ≤ 1
2εLip f (n)−1, then the distance between

f k(x) and f k(y) is less than ε for every natural integer k ≤ n−1. And one can
cover X by roughly (2ε−1Lip f (n))dim(X) balls of radius 1

2εLip f (n)−1. �
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Theorem 7.4. Let f be a diffeomorphism of class C 2 of a closed manifold M.
Assume that the growth of the derivative of f n is exponential: there is η > 0
such that ‖ D f n ‖≥ exp(ηn) as n goes to +∞. Then, hpol( f )≥ 1/2.

A diffeomorphism of the sphere with a north-south dynamics has polynomial
entropy equal to 1; it would be good to replace the inequality hpol( f )≥ 1/2 by
hpol( f )≥ 1 in this theorem.

Sketch of the Proof. From [4], there exists an f -invariant ergodic probability
measure µ on M with a positive Lyapunov exponent. Pesin’s theory implies that
a µ-generic point x has a non-trivial unstable manifold. Let x and y be points
of such an unstable manifold. Then the distance between f n(x) and f n(y) goes
to 0 as n goes to −∞; by Lemma 7.1, this shows that hpol( f )≥ 1/2. �

7.3. Skew products. The following theorem answers a question of Artigue,
Carrasco-Olivera, and Monteverde (see Problem 1 in [1]).

Theorem 7.5. There exists an analytic, area preserving diffeomorphism f of
the torus T2 satisfying the following four properties

(1) f is minimal;
(2) its iterates f n, n ∈ Z, do not form an equicontinuous family;
(3) for every ε > 0, the norm of the derivative of f n satisfies ‖ D f n ‖T2=

o(nε);
(4) the polynomial entropy of f vanishes.

Remark 7.6. One can construct such examples on all tori Tk, k≥ 2 but, if f is
a homeomorphism of the circle with polynomial entropy 0, then f is conjugate
to a rotation (see [26]).

Remark 7.7. Let σ be the shift on ΛZ for some finite alphabet Λ. One easily
proves that the polynomial entropy of a subshift σK : K → K is ≥ 1 for every
σ-invariant infinite compact subset K ⊂ ΛZ. More generally, every expansive
homeomorphism of an infinite compact metric space has polynomial entropy
≥ 1 (see [1]).

Remark 7.8. Fix a function ϕ : R+→ R+ such that ϕ is increasing, ϕ is un-
bounded, ϕ does not vanish, and ϕ(x) = o(x) as x goes to +∞. By a result
of Borichev (see [3], and also [34]), there is an analytic diffeomorphism f of
R2/Z2 that preserves the Lebesgue measure and satisfies

Lip f (n)≤ ϕ(n) and limsup
n→+∞

Lip f (n)
ϕ(n)

> 0. (7.1)
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In fact, one can construct such an f as a skew product f (x,y) = (x+α,y+
g(x)) for some well chosen periodic function g and angle α. The proof of
Theorem 7.5 follows a similar strategy (and is simpler).

7.3.1. Skew product. Let T denote the circle R/Z, so that Td = Rd/Zd is the
torus of dimension d. Let α ∈ R/Z be an irrational number, and let g : T→ R
be a continuous function such that

∫ 1
0 g(x)dx = 0. Consider the homeomor-

phism f : T2×T2 defined by

f (x,y) = (x+α,y+g(x)). (7.2)

The n-th iterate of f is f n(x,y) = (x+nα,y+∑
n−1
j=0 g(x+ jα)); if g is smooth,

f is a diffeomorphism, and the differential of f n is

D f n
(x,y) =

(
1 0

∑
j=n−1
j=0 g′(x+ jα) 1

)
. (7.3)

7.3.2. Minimality and equicontinuity.

Proposition 7.9 (Furstenberg). The homeomorphism f is not minimal if and
only if it is conjugate to (x,y) 7→ (x+α,y) by a homeomorphism (x,y) 7→ (x,y+
h(x)) with h : R/Z→ R that solves the equation h(x+α)−h(x) = g(x).

This follows from [15]. Indeed, Furstenberg proves that a proper minimal
subset of the torus is the graph of such a homeomorphism h.

Proposition 7.10. If ( f k)k∈Z is an equicontinuous family, then

(1) |∑n−1
j=0 g(x+ jα)| ≤ B for some B > 0 and all n≥ 0;

(2) g is a coboundary: there is a continuous function h : R/Z→ R such
that h(x+α)−h(x) = g(x) for all x ∈ R/Z;

(3) f is conjugate to (x,y) 7→ (x + α,y) by a homeomorphism (x,y) 7→
(x,y+h(x));

(4) f is not minimal.

This is well known to specialists, but we sketch the proof for completeness.
The family f Z is equicontinuous; thus for any ε > 0 one can find η > 0 such
that dist( f (x,y), f (x′,y′))≤ ε as soon as dist((x,y),(x′,y′))≤ η, where dist is
the euclidean distance on T2. Taking ε small, and covering T×{0} by η−1

segments of length ≤ η, one sees that the image of I×{0} by any iterate f m

of f is a curve of length at most ε/η. Now, take B > ε/η. Assume that there
exists n and x with |∑n−1

j=0 g(x+ jα)|> B. Since the mean of g is 0, the Birkhoff
sum ∑

n−1
j=0 g(x+ jα) vanish, and one can find an interval I = [a,b]⊂T such that
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∑
n−1
j=0 g(a+ jα) = 0, ∑

n−1
j=0 g(x+ jα)> 0 (or < 0) on ]a,b] and ∑

n−1
j=0 g(b+ jα) =

B (or−B). This implies that the segment I×{0} is mapped to a curve of length
≥ B by f n, contradicting the choice of B. This proves Assertion (1).

Because the sums ∑
n−1
0 g(x+ jα) are uniformly bounded, and x 7→ x+α is a

minimal homeomorphism of T, the lemma of Gottschalk and Hedlund (see [20]
page 100) shows that there exists a continuous function h : T→ R satisfying
h(x+α)− h(x) = g(x). This proves the second assertion, and the other two
follow from it.

7.3.3. Estimate of the derivatives. Now, we choose α and g explicitly. We will
write g as a Fourier series

g(x) = ∑
k∈Z

ake2iπkx. (7.4)

Fix a real number r > 1. If ak ≤ r−k then g is an analytic function on the circle
T. To solve the equation h(x+α)−h(x) = g(x), we also expand h as a Fourier
series ∑k bke2iπkx; then, the bk must verify bk = (e2iπkα−1)−1ak for all k 6= 0.
Choose

α = ∑
i≥1

10−qi = 0.100010000000001000...

where q1 = 1, and the gaps qn+1− qn between two consecutive 1s increase
quickly; more precisely, we shall assume that

qn+1−qn > (log(r)/ log(10))10qn . (7.5)

Then, 10qnα ' 10−(qn+1−qn) mod 1. This done, we choose ak = 0 for all in-
dices except the one of the form k = 10qn , in which case we choose ak =

10−(qn+1−qn). From Equation (7.5) we get |ak| ≤ r−k for all k, so that g is ana-
lytic; but the solutions of the cohomological equation satisfy bk = 1 for k 6= 1,
and we deduce that there is no L2 solution h to the cohomological equation.
This proves the first assertions of the following proposition.

Proposition 7.11. There is a pair (α,g) such that α is a Liouville number, g is
an analytic function, the cohomological equation h(x+α)−h(x) = g(x) (∀x ∈
T) has no continuous solution (resp. no L2 solution), and the diffeomorphism
f satisfies ‖ D f n ‖T2= o(nε) for all ε > 0.

Now, we want to find such a pair (α,g) satisfying
n−1

∑
j=0

g′(x+ jα) = o(nε)
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for every ε > 0. To study this property, we expand g in a Fourier series as in
Equation (7.4). Fixing n, we set

Dn :=
n−1

∑
j=0

g′(x+ jα) = 2iπ ∑
k∈Z

n−1

∑
j=0

(
e2iπkα

) j
kake2iπkx

and observe that

|
n−1

∑
j=0

(
e2iπkα

) j
| ≤ n and

n−1

∑
j=0

(
e2iπkα

) j
=

e2iπkαn−1
e2iπkα−1

for all n≥ 1. Once ε has been fixed, we set τ = ε/4 and split the sum Dn in two
parts:

|Dn| ≤ 2π

∣∣∣∣∣ ∑
|k|≤nτ

(
e2iπkαn−1

) kak

e2iπkα−1

∣∣∣∣∣+2π

∣∣∣∣∣ ∑
|k|≥nτ

nkak

∣∣∣∣∣ .
Since g is analytic, its derivative is also analytic, and kak ≤ CR−k for some
constants C,R > 1. We shall assume that∣∣∣∣ ak

e2iπkα−1

∣∣∣∣≤ 1,

an inequality which is satisfied in the above construction of the pair (α,g).
Altogether we get

|Dn| ≤ 2π× (2nτ×2nτ)+2π×2× ∑
k≥nτ

nCR−k

≤ 8π×n2τ +4π×n×C
R

R−1
R−nτ

≤ C′n2τ

because nR−nτ ≤ n2τ for n large enough. Thus, Dn ≤ C′nε/2 = o(nε), as re-
quired.

7.3.4. Conclusion. The proof of Theorem 7.5 is now a direct consequence of
Propositions 7.9, 7.10 and 7.11, and Lemma 7.3.

Question 7.1. For a minimal skew product on the 2-torus defined by (7.2),
what is its polynomial entropy depending on the value of α and the behavior of
g ?



AUTOMORPHISMS WITH SLOW DYNAMICS 38

8. SLOW GROWTH AUTOMORPHISMS

Theorem 8.1. Let f be an automorphism of a smooth complex projective vari-
ety X. If the derivatives of f satisfy

max
0≤ j≤n

‖ D f n ‖= o(n)

then f is an isometry of X for some Kähler metric.

The assumption implies that the growth of ( f ∗)n on H2(X ;R) is o(n2), and
this implies that ( f ∗)n is bounded on H1,1(X ;R) because f ∗ preserves the Käh-
ler cone. Thus, some positive iterate of f is contained in Aut(X)0. For simplic-
ity, we can therefore assume that f ∈ Aut(X)0.

Consider the Zariski closure A of f Z in Aut(X)0; again, changing f in an-
other positive iterate, we can suppose that A is a connected algebraic subgroup
of Aut(X)0. Let r be the complex dimension of A. As a topological group, A
is isomorphic to Rp/Zp×Rq for some pair of integers (p,q) with p+q = 2r,
and f corresponds to an element (u,v) with u∈Rp/Zp and v∈Rq. If v were 0,
then f would be contained in a compact subgroup of Aut(X)0, and averaging
any Kähler form with respect to the Haar measure on this group, we would get
an f -invariant Kähler metric. Thus, we may assume that v 6= 0. Thus, if S is a
Zariski closed subgroup of A that does not contain f , then f n goes to infinity
in A/S as n goes to +∞.

In particular, the general orbit A(x) = A/Sx, with Sx = Stab(x;A), is not
closed. Such an orbit is a constructible subset of X , and the sequence f n(x)
goes to its boundary as n goes to +∞. But then x would not be a recurrent
point for f , and the polynomial entropy of f would be at least 1. We get a
contradiction with the estimate on ‖ D f n ‖.

Remark 8.2. The assumption in Theorem 8.1 is global. In some situation, it
is sufficient to study the iterates f n on a large Zariski open. For instance: if
( f n) is (locally) equicontinous on the complement of a finite set, then either f is
contained in a compact subgroup of Aut(X), or X is the Riemann sphere P1(C)

and f is a homography; if f is (locally) equicontinuous on the complement of
a Zariski closed subset of co-dimension > 1, then some positive iterate of f is
in Aut(X)0.
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Appendix.– Joint work with Junyi Xie

9. APPENDIX I.– ACTIONS OF FREE GROUPS

Recall that an action of a group Γ on a set X is free if the stabilizer of any
point x ∈ X is reduced to the trivial subgroup {Id} ⊂ Γ.

Theorem 9.1. Let M be a compact kähler manifold of dimension ≤ 3. If
Aut(M) contains a non-amenable subgroup Γ acting freely on M, then dim(M)=

3 and M is a compact torus C3/Λ.

Moreover, there are examples of non-abelian free groups acting freely on
some tori of dimension 3. First, we look at low dimensional tori, then we
construct such examples, and we conclude with a proof of Theorem 9.1

9.1. Tori. Let A = Cn/Λ be a compact torus of dimension n. Every automor-
phism f : A→ A comes from an affine transformation

f̂ (z) = L( f )(z)+T ( f ) (9.1)

of Cn, where the translation part is a vector T ( f ) ∈ Cn and the linear part
L( f )∈GL n(C) preserves the lattice Λ. This defines a homomorphism Aut(A)→
GL n(C), f 7→ L( f ). The following assertions are equivalent:

(i) f has no fixed point;
(ii) the image of the linear transformation (L− Id) does not intersect the set

T +Λ.

In particular, if Γ acts freely on A, then det(L( f )− Id) = 0 for every f in Γ.

Lemma 9.2. Let A be a complex torus of dimension ≤ 2. If Γ ⊂ Aut(A) acts
freely on A, then Γ is solvable. In particular, every free subgroup of Aut(A)
acting freely on A is cyclic.

Proof. If dim(A) = 1, then Aut(A) is solvable. Assume dim(A) = 2, and write
A = C2/Λ. A subgroup G of GL 2(C) such that det(L− Id) = 0 for every L ∈G
is solvable; hence, the equivalence of (i) and (ii) implies: if Γ acts freely on A,
the groups L(Γ) and Γ are solvable. �

9.2. Examples.
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9.2.1. Closed, real analytic manifolds. The group SO 3(R) contains a non-
abelian free group Γ ⊂ SO 3(R). This is well known, since the existence of
such a group is at the basis of the Banach-Tarsky paradox. Now, the action of
Γ on SO 3(R) by left translations is free, and going to the universal cover SU 2
of SO 3(R), we obtain a free action of a non-abelian free group on a simply
connected manifold. These actions being real analytic, the first assertion of the
following theorem is proved.

Theorem 9.3. There are real analytic, free actions of non-abelian free groups
on the following real analytic manifolds:

(1) the simply connected, compact Lie group SU 2;
(2) the torus R3/Z3.

To get the second assertion, consider the lattice Z3, together with the stan-
dard quadratic form of signature (1,2): Q(x,y,z) = x2− y2− z2. Its group of
isometries SO 1,2(Z) is a lattice in the Lie group SO 1,2(R).

Lemma 9.4. The group SO 1,2(Z) contains a free subgroup Γ of Schottky type:
the eigenvalues of every element g ∈ Γ \ {Id} form a triple of real numbers
λg > 1 > λ−1

g .

Proof. Consider the subgroup G0 of SO 1,2(R) preserving each connected com-
ponent of {Q(x,y,z) = 1}. If g is an element of this group, and g has an
eigenvalue of modulus > 1, then its eigenvalues are λg > 1 > λ−1

g for some
λg > 1; equivalently, g is a loxodromic isometry of the hyperbolic space H =

{(x,y,z)|Q(x,y,z) = 1 and x > 0}. Now, take two loxodromic isometries f and
g in G0∩SO 1,2(Z) to which the tennis-table lemma of Fricke and Klein applies
(see [9]). Then, the group Γ generated by f and g is a Schottky group. �

Choose such a free group Γ, of rank 2, and fix a pair (a,b) of elements
generating Γ. In [13], Drumm and Goldman find a non-empty open subset U

of R3×R3 such that for every (s, t) ∈ U , the affine transformations

As(x,y,z) = a(x,y,z)+ s, Bt(x,y,z) = b(x,y,z)+ t (9.2)

generate a free group acting freely and properly on R3. The group generated
by As and Bt is an affine deformation Γs,t of Γ; given any reduced word w in a,
b, and their inverses, we get an element w(As,Bt) in Γs,t , which we can write

w(As,Bt)(x,y,z) = w(a,b)(x,y,z)+Lw(a,b)(s)+Rw(a,b)(t) (9.3)

where Lw(a,b) and Rw(a,b) are elements of the algebra generated by a and b
in End(R3).
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Since a and b are in SL 3(Z) the group Γs,t acts on the torus R3/Z3. This
action is free if, and only if, given any non-trivial reduced word w, and any
element (p,q,r) of the lattice Z3, the equation

(Id−w(A,B))(x,y,z)+(p,q,r) = Lw(a,b)(s)+Rw(a,b)(t) (9.4)

has no solution (x,y,z) ∈ R3. Fix such a pair (w,(p,q,r)). The question be-
comes: is the vector Lw(a,b)(s) + Rw(a,b)(t) contained in the affine plane
(Id−w(A,B))(R3)+(p,q,r)? We distinguish two cases. If (Id−w(A,B))(R3)+

(p,q,r) is actually a vector subspace, in which case this subspace coincides
with (Id−w(A,B))(R3), then we know from Drumm-Goldman result that there
is a pair (s, t) for which Equation (9.4) has no solution. If (Id−w(A,B))(R3)+

(p,q,r) does not contain the origin, then there is no solution to Equation (9.4)
if (s, t) is small enough. Thus, the set W (w,(p,q,r)) of parameters (s, t)∈R3×
R3 such that Equation (9.4) has no solution is non-empty; hence, W (w,(p,q,r))
is open and dense (as the complement of a proper affine subspace of R3×R3).
By Baire theorem, the intersection of all those open dense subsets is non-
empty: this precisely means that there are pairs (s, t) such that the free group
Γs,t acts freely on R3/Z3.

9.2.2. Abelian threefolds. Consider any lattice Λ0 ⊂C, for instance the lattice
Λ0 = Z[i]. Set

Λ = Λ0×Λ0×Λ0 ⊂ C3 (9.5)

and denote by N the abelian threefold C3/Λ. Now, copy the last argument, with
the same group Γs,t , but viewed as a subgroup of the affine group SL 3(Z)nC3,
acting on N = C3. We get

Theorem 9.5. Let Λ0 ⊂ C be a cocompact lattice. There is a free action of a
non-abelian free group on the abelian threefold (C/Λ0)

3 by holomorphic affine
transformations.

9.3. Proof of Theorem 9.1. We now prove Theorem 9.1. According to [], the
group Aut(M) satisfies Tits alternative: if Γ⊂ Aut(M) does not contain a non-
abelian free group, then Γ contains a solvable subgroup of finite index and, in
particular, is amenable. Thus, we can, and shall, assume that Γ is a non-abelian
free group, acting freely on some compact kähler manifold M of dimension
≤ 3. We shall use several times the following fact.

Lemma 9.6. If the group Γ stabilizes a subset S ⊂M, the restriction f ∈ Γ→
f|S is an injective morphism, and the action of Γ on S is free. If the action of a
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finite index subgroup Γ0 ⊂ Γ lifts to an action on a finite cover M′→M, then
the action of Γ0 on M′ is free.

9.3.1. Kodaira dimension.

Lemma 9.7. Let M be a compact kähler manifold, and let Γ be a subgroup of
Aut(M). If the kodaira dimension of M is non-negative, either Km is torsion, or
there is a finite index subgroup Γ1 of Γ and a Γ1-invariant, proper, non-empty,
and irreducible Zariski closed subset Z ⊂M.

Proof. If the kodaira dimension of M is non-negative, the Kodaira-Iitaka fibra-
tion provides a surjective morphism π : M→ B such that:

(1) π is Aut(M)-equivariant: there is a homomorphism ρ : f ∈ Aut(M) 7→
fB ∈ Aut(B) such that fB ◦π = π◦ f ;

(2) the image ρ(Aut(M))⊂ Aut(B) is a finite group. (see [37]).

Thus, a finite index subgroup of Γ fixes individually every fiber of π. If
dim(B)≥ 1, we take Z to be an irreducible component of some fiber, and Γ1 the
finite index subgroup of Γ that preserves the fiber, as well as every irreducible
component of this fiber. If dim(B) = 0, the kodaira dimension of M is 0, and
we can fix an integer d > 0 such that H0(M,K⊗d

M ) = CΩ for some non-trivial
section Ω of K⊗d

M . There is a homomorphism ξ : Γ→ C∗ such that

f ∗Ω = ξ( f )Ω (9.6)

for every f ∈ Γ. In particular, the divisor (Ω)0 is Γ-invariant. If this divisor is
empty, then K⊗d

m is the trivial bundle. If not, we define Z to be an irreducible
component of (Ω)0. �

9.3.2. Curves and surfaces.

Lemma 9.8. If a free group acts freely on a curve, the group is cyclic. If
dim(M)≤ 2 and Γ is a free group acting freely on M, then Γ does not stabilize
any proper, non-empty, Zariski closed set.

Proof. Since every automorphism of P1(C) has a fixed point, we can assume
that the genus of the curve is at least 1, but then its automorphism group is vir-
tually solvable, and any free subgroup is cyclic. The second assertion follows
from Lemma 9.6. �

Lemma 9.9. If a free group acts freely on a compact, kähler surface, the group
is cyclic.
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Proof. If h2,0(M) > 0, Lemmas 9.7 and 9.8 imply that KM is trivial. If M is
a K3 surface, its Euler characteristic is positive, every homeomorphism of M
has a periodic point, and we get a contradiction. If M is a torus, we get a
contradiction from Lemma 9.2. This exhausts all surfaces with KM trivial.

Now, assume that h2,0(M) = 0. Then, from the holomorphic Lefschetz fixed
point formula, we must have h1,0(M) > 0. Consider the Albanese morphism
α : M → AM, where AM is the Albanese torus of M, and let E be the image
of α. Since h1,0(M) > 0, we get dim(E) ∈ {1,2}. By Lemma 9.6 and 9.8,
every proper Γ-invariant analytic subset of M (resp. of E) is empty. Thus,
E is smooth and α is a submersion. First, assume dim(E) = 1. Since E ⊂
AM can not be the Riemann sphere, its group of automorphisms is virtually
solvable; thus, the kernel of the homomorphism Γ→ Aut(E) is a non-abelian
free group, acting freely on the fibers of α, contradicting Lemma 9.8. Thus,
dim(E) = 2 and α : M→ E is a finite cover. This implies h2,0(M)> 0, and we
get a contradiction. �

9.3.3. Dimension 3. Assume dim(M) = 3, M is not a torus, and the non-
abelian free group Γ acts freely on M.

a. kod(M) ≥ 0. – First, assume that the kodaira dimension of M is non-
negative. It follows from Lemmas 9.7 to 9.9 that KM is torsion. Then, after a
finite étale cover, KM is trivial and M is one of the following examples:

(1) a torus of dimension 3;
(2) a (simply connected) Calabi-Yau threefold;
(3) a product of an elliptic curve with a K3 surface.

Lemma 9.10. If a finite cover of M is a torus, and Γ⊂Aut(M) is a non-abelian
free group acting freely on M, then M is a torus.

Thus, the first case is excluded, since we assume that M is not a torus.

Proof. By assumption, there is a torus A = C3/Λ, and a finite group G acting
freely on A such that M = A/G. By construction, M is a quotient of C3 by
a group of affine transformations G̃ ⊂ Aff (C3); the group Λ is a finite index
subgroup of G̃, and the image of the (linear part) homomorphism L : G̃ →
GL 3(C) is a finite subgroup (isomorphic to G since the action of G on A is
free).

The group Γ lifts to a free group of affine transformations of C3 permuting
the orbits of G̃. When f is an element of Γ, we denote by f̂ : z 7→ L( f )z+T ( f )
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the corresponding affine transformation. The group L(Γ) normalizes L(G̃), and
a finite index subgroup L(Γ0) commutes to every element in L(G̃). If G is non-
trivial, then L(G̃) contains a non-trivial linear transformation S, S is diagonal-
izable (because it has finite order), and L(Γ0) preserves its eigenspaces. Since
the action of G on A is fixed-point free, the eigenspace E1 corresponding to
the eigenvalue 1 has positive dimension, intersects Λ on a lattice Λ1 = E1∩Λ,
and both E1 and Λ1 are invariant under the action of L(Γ0). If S had three
distinct eigenvalues, the three eigenlines of S would be L(Γ0) invariant, con-
tradicting the fact that Γ is not virtually solvable. Thus, S has exactly one
other eigenvalues α, corresponding to a L(Γ0)-invariant eigenspace Eα, with
E1⊕Eα = C3. Assume dim(E1) = 1 and dim(E2) = 2. Then, a free subgroup
L(Γ1) acts trivially on E1 (because GL(E1) is abelian), and its action on E2
is made of matrices with eigenvalues 6= 1. Take a generating pair f , g ∈ Γ1;
computing the commutator [ f̂ , ĝ], we observe that the translation part T ([ f ,g])
is contained in Eα and that [ f̂ , ĝ] has a fixed point in C3. This contradicts the
assumption on Γ. The case dim(E1) = 2 is similar. Thus, L(G̃) is trivial and M
is actually a torus. �

Assume we are in case (3), with a finite cover M′ of M isomorphic to X×E
for some K3 surface X ; there is a finite group of automorphisms F ⊂Aut(M′)=
Aut(X×E) acting freely on M′ such that M =M′/F . Every automorphism f of
M′ preserves the Albanese fibration α′ : M′→ E: this gives a homomorphism
F → Aut(E), and we denote by FE its image. The fibration α′ determines a
fibration α : M→ E/FE , and this fibration is Γ invariant. Two cases may occur.
Either E/FE is a curve of genus 1, its automorphism group is solvable, and we
get a contradiction with Lemma 9.9. Or E/FE is a Riemann sphere, the fixed
points of the elements of FE correspond to the critical values of α, and a finite
index subgroup of Γ preserves the corresponding fibers. Again, Lemma 9.9
provides a contradiction.

We can now assume that we are in case (2), i.e. the universal cover of M is
an irreducible Calabi-Yau threefold. Lifting Γ to the universal cover, we can
assume that M itself is Calabi-Yau. The action on cohomology gives rise to a
homomorphism Γ→GL(H∗(M;Z)), f 7→ f∗= ( f−1)∗. Here is the key lemma:

Lemma 9.11. Let M be a (simply connected) Calabi-Yau threefold. The action
of Aut(M) on the cohomology group H3(M;Z) factors through a finite group.

Let f be an automorphism of M. If all orbits of f are infinite then
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(1) the action of f on the cohomology of M is virtually unipotent: there is
a positive integer k such that ( f k)∗ is unipotent;

(2) h2,1(M) = h1,1(M) and the topological Euler characteristic of M is 0.

Proof. Fix a kähler class κ on M. Since hp,q(M) = 0 when p+q = 1 or 5, we
deduce that every class α in H2,1(M) is primitive: α∧κ= 0 because H3,2(M)=

0. Thus, the intersection product
∫

M α∧α determines an Aut(X)-invariant,
positive definite quadratic form on the vector space H2,1(M). On H3,0(M), the
product ω 7→

∫
M ω∧ω is also positive definite. As a consequence, the image

of Aut(M) in H3(M;C) is contained in a unitary group. Since it preserves the
integral structure H3(M;Z), it is contained in a finite group. This implies that
a finite index subgroup of Aut(M) acts trivially on H3(M,Z).

Now, apply the holomorphic Lefschetz fixed point theorem: if there is no
periodic point, the traces of f ∗ on H1,1(M) and H2,1(M) satisfy

Tr((( f n)∗)1,1) = Tr((( f n)∗)2,1) (∀n ∈ Z\{0}). (9.7)

Changing f in a positive iterate g = f m, we may assume that Tr(((gn)∗)2,1) =

h2,1(M) for all n, and then Tr(((gn)∗)1,1) = h2,1(M) also for all n. But this
equality implies that (g∗)1,1 is unipotent and h2,1(M) = h1,1(M). Thus, ( f ∗)1,1
is virtually unipotent. Since H2,0(M) = 0, the action of f ∗ on H∗(M,Z) is
virtually unipotent. �

Since Γ is a free subgroup of Aut(M), the representation Γ→GL(H∗(M;Z))
is faithfull because the kernel of Aut(M)→ GL(H∗(M;Z)) is finite when M is
Calabi-Yau (every holomorphic vector field on M is 0). Since Γ acts freely
on M, all elements f ∗ ∈ GL(H∗(M;Z)) for f ∈ Γ are virtually unipotent: this
implies that Γ is cyclic, because a subgroup of GL m(C) all of whose elements
are virtually unipotent is a solvable group up to finite index. We obtain the
following.

Lemma 9.12. Let M be a compact kähler manifold of dimension 3 whose ko-
daira dimension is non-negative. If there is a non-abelian free group acting
freely on M, then M is a torus.

b. kod(M) =−∞. – Thus, in what follows, we assume that the Kodaira dimen-
sion of M is −∞. In particular, h3,0(M) = 0. We prove that non-abelian free
groups can not act freely on M.

Assume that h1,0(M) = 0, and apply the holomorphic fixed point formula.
This gives

Tr(( f n)∗2,0) =−1 (9.8)
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for all elements f 6= Id of Γ and all integers n 6= 0. Again, we get a contradic-
tion. Thus, h1,0(M)> 0, and the Albanese map is a non-trivial morphism

α : M→ AM (9.9)

where AM is the Albanese torus of M. This map is equivariant with respect to
a homomorphism ρ : Aut(M)→ Aut(AM), meaning that α ◦ f = ρ( f ) ◦α for
every f ∈ Aut(M). Let E ⊂ AM be the image of α. Assuming that the rank of
the free group Γ is at least 2, we shall prove successively that

• E is smooth and the map α : M→ E is a submersion;
• E has dimension 2.

If E contains a non-empty Zariski closed proper subset Z which is invariant un-
der the action of ρ(Γ), then α−1(Z) is a non-empty, Zariski closed, proper and
Γ-invariant subset of M; its dimension is at most 2, and we get a contradiction
since Γ can not act freely on such a subset (Lemmas 9.6, and 9.9). Thus, E is
smooth and the critical locus of α is empty, i.e. α is a submersion.

If E is a curve, its genus is ≥ 1 (because E is contained in the torus AM), its
automorphism group is solvable, and there is a non-abelian free group Γ1 ⊂ Γ

that acts trivially on E, and freely on every fiber of α: again, we get a contra-
diction.

If dim(E) = 3, then M is a finite cover of E (because α is a submersion).
This implies that there is a non-trivial holomorphic 3-form on M, contradicting
h3,0(M) = 0.

Thus, we assume dim(E) = 2. Let K ⊂ AM be the (connected) subtorus of
maximal dimension such that E +K = E: it is uniquely determined by E, and
the projection p(E) of E in the quotient torus AM/K is a manifold of general
type and of dimension dim(E)−dim(K) (more precisely, the canonical bundle
of p(E) is ample, see [10], §VII). If K = {0} is reduced to a point, then, E is a
surface of general type, hence Aut(E) is a finite group and we get a contradic-
tion with Lemma 9.8. If dim(K) = 1 we get dim(p(E)) = 1 and the morphism
p ◦α : M→ p(E) is invariant under a finite index subgroup of Γ. Since p(E)
is a curve of general type, the image of Γ in Aut(p(E)) is finite and, again, we
get a contradiction with Lemma 9.9.

Now, assume dim(K) = 2, which means that E = AM is a 2-dimensional
torus. Denote by (x,y) the affine coordinates on E = C2/Λ, where Λ is a
lattice in C2. Let Ω be a holomorphic 2-form on M. Since h3,0(M) = 0, we get

Ω∧α
∗(dx) = Ω∧α

∗(dy) = 0. (9.10)
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This implies that Ω = aα∗(dx∧dy) for some holomorphic function a : M→C;
such a function must be a constant, and we conclude that H2,0(M) = Cα∗(dx∧
dy). In particular, a finite index subgroup of Γ acts trivially on H2,0(M), and
the holomorphic Lefschetz fixed point formula gives 1−Tr(( f ∗1,0)

n)+1= 0 for
every f ∈ Γ \ {Id} and every n 6= 0. This shows that f ∗1,0 is unipotent. Hence,
ρ(Γ) is a subgroup of Aut(E), all of whose elements are affine automorphisms
of C2/Λ with a unipotent linear part: such a group is solvable. Thus, a non-
abelian free subgroup of Γ acts freely on the fibers of α and this contradicts
Lemma 9.8.

This concludes the proof of Theorem 9.1

10. APPENDIX II.– THEOREMS OF HERMANN, AND OF LESIEUTRE,
OGUISO AND ZHANG

Michael Herman proved that there is a (real analytic) diffeomorphism h of
a (real analytic) compact manifold M such that (1) the topological entropy of
f : M→ M is positive, and (2) f is a minimal transformation of M, meaning
that every orbit of f is dense in M (for the euclidian topology). We don’t know
whether such an example exists in the context of holomorphic diffeomorphisms
of compact kähler manifolds, even for Calabi-Yau manifolds. We explain now
that such an example can not exist in dimension ≤ 3.

In [28], Lesieutre studied automorphisms of complex projective manifolds
of dimension 3 with positive topological entropy, showing how results of the
minimal model program interact with techniques from dynamical systems.
This is useful to study automorphisms acting minimally, and Oguiso and Zhang
recently announced the following result: let f be an automorphism of a com-
plex projective manifold X of dimension 3; if all orbits of f are Zariski dense,
then either X is a torus or a finite cover of X is a (simply connected) Calabi-Yau
manifold(1). From Lemma 9.11, we know that a holomorphic diffeomorphism
of a Calabi-Yau threefold with positive entropy has a periodic orbit. Thus, with
Oguiso-Zhang theorem we get

Theorem 10.1. Let f be an automorphism of a complex projective manifold
of dimension at most 3. If the topological entropy of f : M → M is positive,
there is a non-empty, proper, Zariski closed, and f -invariant subset Z ⊂M; in
particular, the action of f on M is not minimal.

1The conjecture is that this last case should be excluded too, so that X is in fact a torus.
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This result says that there is no holomorphic Herman example on compact
kähler manifolds of dimension ≤ 3. We believe that such an example can be
constructed if the kähler assumption is taken out. Mary Rees in [36] constructs
Herman-like examples for tori of any dimension (starting from 2) - these ex-
amples are only C0-smooth.



AUTOMORPHISMS WITH SLOW DYNAMICS 49

REFERENCES

[1] A. Artigue, D. Carrasco-Olivera, and I. Monteverde. Polynomial entropy and expansivity.
Acta Math. Hungar., 152(140), 2017.

[2] Patrick Bernard and Clémence Labrousse. An entropic characterization of the flat metrics
on the two torus. Geom. Dedicata, 180:187–201, 2016.

[3] Alexander Borichev. Slow area-preserving diffeomorphisms of the torus. Israel J. Math.,
141:277–284, 2004.

[4] Serge Cantat. Progrès récents concernant le programme de zimmer. In Séminaire Bour-
baki, volume 1136.

[5] Serge Cantat. Dynamique des automorphismes des surfaces K3. Acta Math., 187(1):1–
57, 2001.

[6] Serge Cantat. Sur la dynamique du groupe d’automorphismes des surfaces K3. Trans-
form. Groups, 6(3):201–214, 2001.

[7] Serge Cantat. Dynamics of automorphisms of compact complex surfaces. In Frontiers in
complex dynamics, volume 51 of Princeton Math. Ser., pages 463–514. Princeton Univ.
Press, Princeton, NJ, 2014.

[8] Nguyen-Bac Dang. Degrees of iterates of rational maps on normal projective varieties.
preprint, arXiv:1701.07760, pages 1–46, 2017.

[9] Pierre de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, IL, 2000.

[10] Olivier Debarre. Tores et variétés abéliennes complexes, volume 6 of Cours Spécialisés
[Specialized Courses]. Société Mathématique de France, Paris; EDP Sciences, Les Ulis,
1999.

[11] Tien-Cuong Dinh and Nessim Sibony. Regularization of currents and entropy. Ann. Sci.
École Norm. Sup. (4), 37(6):959–971, 2004.

[12] Tien-Cuong Dinh and Nessim Sibony. Une borne supérieure pour l’entropie topologique
d’une application rationnelle. Ann. of Math. (2), 161(3):1637–1644, 2005.

[13] Todd A. Drumm and William M. Goldman. Complete flat Lorentz 3-manifolds with free
fundamental group. Internat. J. Math., 1(2):149–161, 1990.

[14] Romain Dujardin. Laminar currents and birational dynamics. Duke Math. J., 131(2):219–
247, 2006.

[15] H. Furstenberg. Strict ergodicity and transformation of the torus. Amer. J. Math., 83:573–
601, 1961.

[16] Mikhaïl Gromov. On the entropy of holomorphic maps. Enseign. Math. (2), 49(3-4):217–
235, 2003.

[17] Vincent Guedj. Propriétés ergodiques des applications rationnelles. In Quelques aspects
des systèmes dynamiques polynomiaux, volume 30 of Panor. Synthèses, pages 97–202.
Soc. Math. France, Paris, 2010.

[18] Louis Hauseux and Frédéric Le Roux. Polynomial entropy of brouwer homeomorphisms.
preprint, 2018.

[19] Adam Kanigowski. Slow entropy for some smooth flows on surfaces. Israel J. Math.,
226(2):535–577, 2018.

[20] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical sys-
tems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo
Mendoza.



AUTOMORPHISMS WITH SLOW DYNAMICS 50

[21] Anatole Katok, Svetlana Katok, and Federico Rodriguez Hertz. The Fried average en-
tropy and slow entropy for actions of higher rank abelian groups. Geom. Funct. Anal.,
24(4):1204–1228, 2014.

[22] Anatole Katok and Jean-Paul Thouvenot. Slow entropy type invariants and smooth
realization of commuting measure-preserving transformations. Ann. Inst. H. Poincaré
Probab. Statist., 33(3):323–338, 1997.

[23] L. Kronecker. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine
Angew. Math., 53:173–175, 1857.

[24] Clémence Labrousse. Flat metrics are strict local minimizers for the polynomial entropy.
Regul. Chaotic Dyn., 17(6):479–491, 2012.

[25] Clémence Labrousse. Polynomial growth of the volume of balls for zero-entropy geodesic
systems. Nonlinearity, 25(11):3049–3069, 2012.

[26] Clémence Labrousse. Polynomial entropy for the circle homeomorphisms and for c1 non-
vanishing vector fields on t2. preprint, 25(11):10, 2013.

[27] Clémence Labrousse and Jean-Pierre Marco. Polynomial entropies for Bott integrable
Hamiltonian systems. Regul. Chaotic Dyn., 19(3):374–414, 2014.

[28] John Lesieutre. A projective variety with discrete, non-finitely generated automorphism
group. Inventiones Math., 212(1):189–211, 2018.

[29] Federico Lo Bianco. Bornes sur les degrés dynamiques d’automorphismes de variétés
kählériennes de dimension 3. C. R. Math. Acad. Sci. Paris, 352(6):515–519, 2014.

[30] Fédérico LoBianco. Bornes sur les degrés dynamiques d’automorphismes de variétés
kähleriennes : généralités et analyse du cas de la dimension 3. master thesis, 2013.

[31] Fédérico LoBianco. On the cohomological action of automorphisms of compact kähler
threefolds. preprint, 2017.

[32] Jean-Pierre Marco. Polynomial entropies and integrable Hamiltonian systems. Regul.
Chaotic Dyn., 18(6):623–655, 2013.

[33] Jean-Pierre Marco. Entropy of billiard maps and a dynamical version of the Birkhoff
conjecture. J. Geom. Phys., 124:413–420, 2018.

[34] Leonid Polterovich. Slow symplectic maps, continued fractions, and related stories. In
Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal,
QC, 2001), volume 35 of Fields Inst. Commun., pages 165–173. Amer. Math. Soc., Prov-
idence, RI, 2003.

[35] Joseph Potters. On almost homogeneous compact complex analytic surfaces. Invent.
Math., 8:244–266, 1969.

[36] Mary Rees. A minimal positive entropy homeomorphism of the torus. Journal L.M.S.,
23:537–550, 1981.

[37] Kenji Ueno. Classification theory of algebraic varieties and compact complex spaces.
Lecture Notes in Mathematics, Vol. 439. Springer-Verlag, Berlin-New York, 1975. Notes
written in collaboration with P. Cherenack.

[38] Christian Urech. Remarks on the degree growth of birational transformations. Math. Res.
Lett., 25(1):291–308, 2018.

[39] Y. Yomdin. Ck-resolution of semialgebraic mappings. Addendum to: “Volume growth
and entropy”. Israel J. Math., 57(3):301–317, 1987.

[40] Y. Yomdin. Volume growth and entropy. Israel J. Math., 57(3):285–300, 1987.



AUTOMORPHISMS WITH SLOW DYNAMICS 51

UNIV RENNES, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE
Email address: serge.cantat@univ-rennes1.fr, olga.romaskevich@univ-rennes1.fr,

junyi.xie@univ-rennes1.fr


