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A tiling billiard is a mathematical model of mouvement of light in the heterogeneous medium.
Consider a tiling of the euclidian plane by polygones for which every tile t is marked by a number
n(t) ∈ R∗ which is its refraction index. A billiard in this tiling is constructed in a following way.
A particle follows a straight line segment till a moment when it strikes into a boundary of some
tile. Then, it passes to a neighbouring tile and the direction of its trajectory changes with respect
to Snell-Descartes law. These billiards were firstly mentionned by Mascarenhas and Fluegel [34] in a
non-published preprint. The mathematical study of these billiards was proposed in 2016 [20] for the
case of a square tiling and in [12] for any tiling where the coefficient of refraction between two tiles
is always equal to −1. This second case doesn’t (yet?) correspond to any physical reality. But it
looks promising: recent progress in meta-materials has showed [41, 45] the existence of metamaterials
with negatif refraction index (around −0.6). Note that most of usual plastic or glass materials have
coefficients of refraction bigger than 1. The case negative refraction index equal to −1 represents, in
our opinion, a great mathematical interest, as it will be explained in these notes.

A complete bibliography on tiling billiards contains around ten articles (see the introductions of
[25, 9]). The goal of these notes is to present some thoughts on tiling billiards as well as ask some
questions that seem interesting to us, in order to maybe motivate our reader to engage herself in this
beautiful world. Thoughts and questions, that’s all it is.

1. Locally foldable tilings

In our work with Pascal Hubert [25], we give a complete description of qualitative behavior of tiling
billiards in triangular periodic tilings with a coefficient of refraction equal to −1. Here, a triangular
periodic tiling is a tiling of a plane by three families of equidistant parallel lines. See [12] for the
first definition of this system and [9, 25] for its interesting properties. In [25] we also study the
case of periodic tilings by cyclic quadrilaterals. A periodic tiling by cyclic quadrilaterals is a
tiling in which all tiles are isometric to some cyclic (inscribed in a circle) quadrilateral and each two
neighbouring tiles are centrally symmetric to each other with respect to the center of their common
side.

We think that one can generalize some of the results concerning triangular periodic tilings and
tilings by cyclic quadrilaterals to the case of locally foldable tilings. This Section concerns hence this
larger class of tilings and tiling billiards (always with coefficient −1 between neighbouring tiles) ans
problems that arise from the study of such kind of dynamics.

A tiling of plane by polygons is locally foldable if

(a.) every vertex of this tiling has an even degree, i.e. an even number of polygons meets in each
of the vertices and such a tiling can be colored in two different colors (say, black and white for
the following)

(b.) the sume of adjacent angles of a fixed color in each vertex of a tiling is equal to π (equilibrium
of the angles)

Example. Many more periodic locally foldable tilings exist. For example, a Napoleon’s tiling obtained
by four different types of types : one tile is an arbitrary triangle with sides of lengths a, b, c, and
three other types are three different equilateral triangles with the sides of the lengths a, b and c
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Figure 1. Napoleon’s tiling, screenshot of a Think Twice video

correspondingly. 1 In general, many periodic non-locally foldable tilings can be constructed, see e.g.
the relation between periodic locally foldable tilings and dimer models [28], as well as Hull’s survey
[26].

The interest of the class of locally foldable tilings is that this class admits natural foliations with
leafs that are orbits of a tiling billiard (these foliations will be discussed in the following). This helps
to prove that such a billiard is a closed dynamical system: all of its bounded orbits are closed.
This is a new and simple remark, and we think it should be taken into account for the study of these
billiards. We write this fact for everybody, ourselves included - author’s own work [25] with P. Hubert
gives the proofs of some results on triangle tiling billiards without using the fact that we are dealing
with a foliation.

For every fixed combinatorics (given by a bipartite graph G), a periodic locally foldable tiling can
be parametrized by a finite number of parameters, and one can define the Lebesgue measure on the
set of such tilings of fixed combinatorics. We hope that one can use the methods of complex analysis
(discrete complex analysis?) as well as of complex reflection in order to study such tilings.

1.1. Dimers and Harnak curves: parameters of a locally foldable tiling with fixed combi-
natorics. It happens that locally foldable tiling appear in a very different context, i.e. in the study
of probabilistic dimer model. For example, in [28] the parameters on the space of locally foldable
tilings with a given periodic bipartite graph structure are defined: a point in a space of parameters
defining a fixed tiling has the coordinates defines by so-called X variables and a point (λ1, λ2) on a
spectral curve, see [28, 29]. If a point on a spectral curve is simple, Lemma 10 in [28] says that the
corresponding tiling is periodic. If it is a double point, then the space of parameters corresponding
to such a point has 4 degrees of liberty but, following Lemma 11 in [28], only one of them gives a
periodic origami.

1We learned about the existence of this tiling and its relation to a so-called Napoleon’s theorem in the video of a
wondeful Youtube channel Think twice, follow the link for this video and many other beautiful math videos, https:
//www.youtube.com/watch?v=KQ8cSuoopyc.

https://www.youtube.com/watch?v=KQ8cSuoopyc
https://www.youtube.com/watch?v=KQ8cSuoopyc
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Question 1. Is the dynamics of a tiling billiard in a locally foldable tiling given by a (periodic)
bipartite graph G almost always "the same"and integrable: for a fixed combinatorics (graph G) and
a full measure on the set of tilings and initial conditions on the trajectories, the trajectories are closed
or escape to infinity in a linear way ?

Any answer is interesting. For the "yes" direction, one could ask oneselves if this question is related
to Novikov’s problem [38] on the asymptotic behavior of plane sections of three-periodic surfaces.
For the "no" direction, if one finds the stable examples of new behaviors on some locally foldable
tiling, one can ask oneselves if the generic behavior of trajectories in such a billiard is related to the
corresponding Harnack curve.

It is interesting to note that locally foldable tilings have already been studied in many other con-
texts. Indeed, they are related (as shown in [28]) to circle patterns and three dimensional hyperbolic
polyhedra.

We find it very interesting to study the connections between the dimers and the tiling billiards.
Maybe, by chance, there are some beatiful results between probability, dynamics and combinatorics?...
Of course, it is interesting to look at a more general case of non-periodic locally foldable tilings.

1.2. Tiling billiards in locally foldable tilings. An important property of locally foldable class
of tilings is that the tiling billiards on these tilings have wonderful rigidity properties.

This Lemma is obvious for origamists but we formulate and prove it here since it is a key Lemma
for the following.

Lemma 1 (Folding lemma for locally foldable tilings). Fix a locally foldable tiling (not necessarily
periodic) and some tile τ0 in it. Then take any other tile τ (maybe equal to τ0) and any path through
the tiles of a tiling connecting τ0 to τ . Then the following holds:

(a.) one can fold the neighbouring polygons one on each other in such a way that each two neigh-
bouring polygones in a path are folded along their common edge

(b.) the folded image of τ is well defined - doesn’t depend on a chosen path.

Proof. It suffices to prove the statement for τ = τ0 (and a path being a loop), and even more, by
breaking down each closed path in a sum of paths around vertices, it suffices to prove this lemma for
the closed path going around a vertex contained in τ0. The statement of the lemma for such a loop
is equivalent to local foldability condition. Indeed, when one folds one polygon on another in a tour
around a vertex, the difference between black and white angles in the vertex defines the displacement
of the initial tile τ0 with respect to its initial position. Since by definition this diffrence is zero in a
locally foldable tiling, a tile comes back to its place, see Figure 2. �

One can speak about a holonomy of a tiling, the holonomy of a locally foldable tiling being trivial.
This lemma immediately gives a much simpler proof of the results of Section 2 in [9] and generalizes

them. Indeed, we have the following

Lemma 2 (Closed trajectories). Any trajectory of a tiling billiard with coefficient of refraction equal
to −1 in a locally foldable tiling passes through each tile a finite number of times, and all bounded
trajectories are close. For any convex tile, a trajectory passes through it at most once. Moreover, each
periodic trajectory is stable under perturbation (slight change of the form of each tile as well as slight
change of initial conditions).

Proof. By Lemma 1, the folding of the tiling is well defined. By the simple and crucial remark first
noticed in [9] for triangle tiling billiards, for any trajectory, its image in the folded figure is contained
in some line. The following is elementary. This line crosses each polygon a finite number of times.
For a bounded trajectory, at some moment the trajectory will pass by the same polygon, hence it will
repeat itself and close up. Note that for convex polygons, the trajectory crosses them at most once.
And in any case, a bounded trajectory corresponds ot a simple closed curve. Moreover, each periodic
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Figure 2. Folding around a vertex. On the left picture one can see a vertex of a
locally foldable tiling and the polygons that contain this vertex. One makes a loop
around a vertex and folds each neighbouring polygon on the previous one as shown on
the picture on the right. In a locally foldable tiling, the image of an initial polygon
under this procedure coincides with its initial position on the plane.

Figure 3. On the left : illustration of Tree conjecture in its generalisation, that of
density. The trajectory is drawn in red and this is a trajectory in a triangle tiling
billiard, with internal (external) graphs with colored in black (white) vertices. On the
right : an example of a trajectory in a wind-tree tiling billiard.

trajectory is stable under perturbation since its symbolic dynamics is not changed if the line changes
its direction a little bit. �

Remark. The statement of this Lemma holds for any tiling with differentiable by arcs boundaries
having a locally foldable condition (that can be generalized far more than for the case of polygons).

2. Tree conjecture and limits of trajectories

In the beginning of this Section, we concentrate our attention on a very small class of tiling billiards,
triangle tiling billiards. This class was first studied in [9] and the following conjecture was formulated
concerning triangle tiling billiards: every periodic trajectory γ of a triangle tiling billiard doesn’t go
around the triangles, see Figure 3 for illustration.
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Conjecture 1 (Tree conjecture). Let Λ be as a union of all vertices and edges of all drawn triangles
in a periodic triangle tiling. Take any periodic closed trajectory δ of a corresponding triangle tiling
billiard. It incloses some bounded domain U ⊂ R2 in the plane, ∂U = δ and U ∩ Λ is an embedding
of some graph in the plane. Then this graph is a tree.

This conjecture was proven in [9] for obtuse triangles (the tree in question is in this case a chain).
This conjecture has an even stronger form corresponding to the fact that any trajectory (not necessarily
closed) fills in the subset of the plane that it occupies, that we present in the following. We did advance
in the proof of this conjecture but still didn’t finish it entirely.

Thanks to the study of foliations of the plan naturally associated to such a tiling billiard, we have
succeeded to reduce the Tree conjecture to the conjecture on the local behavior of separatrices of a
vertex in a tiling. We believe that the behavior described in the Conjecture 1 is related to certain
properties of balance of the symbolic dynamics of fully flipped interval exchange transformations
(belonging to the kernel of SAF invariant, see Section 5).

The Tree conjecture has a generalisation that we call Density conjecture. The idea is that every
trajectory (not necessarily a closed one) constructs by its dynamics two graphs simultaneously: one
interior and one exterior. We also find some obstructions to the Tree conjecture on the locally foldable
tilings, and give examples when this conjecture doesn’t hold anymore.

Our interest to this conjecture (besides its intrinsic beauty) comes from the following remark. If this
conjecture is true, it may be a way to prove the existence of the exceptional trajectories of triangle
tiling billiards that pass by all the triangles without exception. In the preprint [9], the authors
claim to have constructed some of such examples but it seems that the proof is not finished. Such
exceptional trajectories (if they exist, and we strongly believe so) will be related to the exceptional
fractal curves studied by McMullen [36], Arnoux [2], Hooper-Weiss [23], Lowenstein-Poggiaspalla-
Vivaldi [31]. These diffrent curves are all connected to each other and are extremely important in
order to understand families of interval exchange transformations. It would be extremely interesting
to find the trajectories of triangle tiling billiards that approach the Rauzy fractal and prove the
convergence results. As announced in [9], these trajectories seem to experimentally exist although we
are far away from proving it. In the context of the study of foliations corresponding to Arnoux-Yoccoz
interval exchange transformations, the convergence of certain triangle tiling billiard trajectories to the
Rauzy fractal has been conjectured by Hooper and Weiss in [23].

2.1. Generalisation of the Tree conjecture : Density conjecture. In this Section we give a
generalization of the Conjecture 1.

Denote V a set of vertices v ∈ Λ such that the trajectory intersects at least one edge with v as
an extremity. We will color the vertices of this set in two colors, black and white : V = B t W by
following the trajectory. Here is an algorithm of simultaneous construction of the sets B and W .

First, pick some edge e crossed by a trajectory. Denote its extremities b0 and w0, in any order.
Add b0 ∈ B, w0 ∈ W . Then we continue the procedure by adding, after each step of a tiling billiard
reflection, the points bj, wj being the extremities of the sides crossed by the trajectory to the collection
B tW by assigning them colors. The colors are assigned in such a way that the edges of bjbj+1 and
wjwj+1 are not crossed by the trajectory and, on the contrary, the edges bjwj+1 and wjbj+1 are crossed
by the trajectory. Note that first, some of these edges degenerate into vertices (at each step, either
bj = bj+1 or wj = wj+1). And second, it may also happen that bj = bk, k < j − 1. See Figure 3 for an
example.

Take two graphs ΓB and ΓW in the plane with vertices being correspondingly the sets VB := B
and VW := W and the edges connecting two vertices with consequent indices of the same color. If
bj = bj+1, we do not add any loop.

Then Conjecture 1 can be generalized to have the following form:
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Figure 4. The edge that has two different colored vertices is crossed by the trajectory.
One can easily see that all the vertices of the same color end up after folding on the
same side from the line of trajectory in the circumcircle system.

Conjecture 2 (Density conjecture). A trajectory is not closed if and only if both of the corresponding
graphs ΓB and ΓW are trees. A trajectory is closed if and only if one of the corresponding graphs is a
tree (corresponding to the vertices inside the trajectory) and another of these graphs(corresponding to
the vertices outside of the trajectory) has a unique cycle in it.

To a triangle tiling billiard one associates a system of reflections in a circumcircle (see Definition
3 in [25]). The triangles obtained in a trajectory are exactly those all of whose vertices are colored
(belong to V). By coloring the images of black and white vertices in the tiling for the system in a
circumcircle (a folded system) as well, one can note that black vertices lay on one of side of the chord
defined by a trajectory and white vertices lay on the other side.

Proposition 1. Fix some trajectory of a triangle tiling billiard. Take a parameter τ corresponding
to the direction of this trajectory and the sets ΓB and ΓW defined by this trajectory. Then for the
corresponding system of reflections in a circle with the same τ and a corresponding initial condition,
all of the images of the vertices of ΓB will be on one side of the chord defined by τ and all of the
vertices of ΓW will be on the other side.

Proof. This is a very simple geometrical argument by induction that uses the fact that the triangle
tiling folds into the circle, see Figure 4. �

This remark helps to prove that a trajectory can’t contour a triangle without getting inside it.

Proposition 2. There is no trajectory of triangle tiling billiard not passing through some triangle ∆
but at the same moment passing through all of its neighboring triangles (the three triangles ∆a,∆b,∆c

sharing the sides with ∆).

Proof. Indeed, if such a trajectory exists the vertices A,B,C of ∆ are colored in the same color and
the other three vertices A′, B′, C ′of ∆a,∆b,∆c not belonging to ∆ are colored in an opposite color. By
looking at the system in a circumcircle, one remarks that the image of ∆ in the circle lies on one side
of the chord corresponding to the trajectory. In this case, its reflection with respect to at least one
of its sides also lies on the same side of this chord. This reflection is an image of one of the triangles
∆a,∆b,∆c. This forces one of the vertices A′, B′, C ′ to have the same color as the vertices of ∆. We
obtain a contradiction. �

The proof of this Proposition is simple but we failed to generalize it in order to prove Conjectures
1 and 2. The difficulty consists in the fact that the chord in the circle doesn’t correspond to one
trajectory but to a family of such trajectories. This conjecture can be reformulated in the language
of topology: in one folds all of the triangles in the triangle tiling on to a circle and then cuts along
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Figure 5. The generalisation of the Tree Conjecture for cyclic quadrilaterals seems to
also hold experimentally. This Figure represents a part of the trajectory (in blue) in a
billiard with a graph ΓB drawn completely for this part of trajectory and the graph ΓW
drawn in part (to be able to show the progression of the growth of the graphs).

a chord in this circle, the plane will split in some number of surfaces, and none of these surfaces is
annulus.

The tree conjecture still seems to hold experimentaly for the case of cyclic quadrilateral tilings, see
Figure 5. The density conjecture also holds modulo the following minor changes. Now, if trajectory
comes from one edge to another, it may be possible that the two vertices of the same color can not be
connected by the edge in a tiling (in the case when the trajectory crosses two edges having a common
vertex, for example). In this case one includes also the last vertex and one connects this vertex to its
neighbours and one colors them all in the same color. In this way, all the crossed quadrilaterals will
also have all of their vertices colored.

Note that tree conjecture is false in full generality on locally foldable tilings, as shows this simple
remark.

Proposition 3. The triangle tiling is locally foldable and can be modified locally into a new locally
foldable tiling on which tiling billiard trajectories can contour the tiles.

Proof. Consider a standard triangle tiling (even with an equilateral triangle), and a 6-periodic tra-
jectory in it. Define a new tiling which is the obtained by cutting the plane by three families of
equidistant parallel lines plus six segments that are the parts of the simple 6-periodic trajectory. By
definition, a tiling obtained in such a way is locally foldable. One can see, that there is an obvious
6-periodic trajectory in such a tiling that doesn’t verify tree conjecture, see Figure 6. Moreover, there
is an open set of counterexamples (if one changes all of the parameters by a little, the combinatorics
stays the same). �

One suspects that this is the only way how the tree conjecture may be false (existence of closed
loops in the boundaries of the tiles that are folded inside a straight line).
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Figure 6. Simple counterexample to the tree conjecture for locally foldable tilings.

2.2. Reducing the tree conjecture to the flower conjecture (but not proving flower con-
jecture...) There are two natural families of foliations that are defined for tiling billiards on locally
foldable tilings that come from the line foliations on the folded construction.

Definition 1 (Foliation F1). Suppose that a locally foldable tiling is folded in some origami. Take a
sheaf of oriented parallel lines on the plane. Then one can consider how they intersect the polygons
in the origami and hence, initial polygones on the plane.

Definition 2 (Foliation F2). Suppose that a locally foldable tiling is folded in some origami. Take
a sheaf of lrays going out (propagating) from some fixed point (that we call base point) inside one
of the tiles. Then one can consider how they intersect the polygons in the origami and hence, initial
polygones on the plane.

Question 2. Study the Illumination problem for tiling billiards. For a fixed tiling, does there
exist a finite number of points such that the light coming out from these points and following the
tiling billiard negative refraction law, illuminates all the plane ? If yes, how many points of that kind
are needed ?

Remark. Even for a square tiling, the anwer to this problem doesn’t seem obvious. For a point
being a center of a square τ0, one can see that it illuminates a regular subset of a column and a row
containing τ0. For a point on one of the sides, the illuminated set is also quiet obvious. Although, for
a point chosen arbitrary, the illuminated set seems to be more complicated. This can be interesting
to study by using computer simulations.

By Lemmas 1 and 2, one can easily see that these foliations are well defined.

Lemma 3. a. Foliations F1 and F2 being parallel foliation and from-one-point foliation, are well
defined.

b. Each of the leaves of the foliation is a trajectory of a triangle tiling billiard (possibly singular).
c. Consider some foliation of type F1 and two of its leaves (trajectories, possibly singular, of a

tiling billiard). Then if these two leaves enter the same vertex, they correspond to the same
line on a folded construction.

Proof. The points a. and b. follow from Lemmas 2 and 1, and[c.] is obvious since it’s exactly the leaf
passing through this vertex in the folded system. �

Remark. Note that any triangle tiling trajectory can be included in some foliation of type F1 (this
foliation is defined uniquely by a chosen trajectory) and in a family of foliations F2 (by choosing any
point on the trajectory as the base point).
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Figure 7. Some parts of the leaves of the foliation F2 starting in a fixed point in some
triangle. Different colours correspond to different futures. Note that the foliation F2 as
it is defined in this note is not the same as a lamination which is defined as union of
all light beams going from one point on the plane in all directions. Indeed, the second
lamination doesn’t foliate all the plane but only a part of it, leaving out some zones that
won’t be illuminated. This remark touches on the questions of Illumination problem in
the context of tiling billiards that has not been yet considered by anyone. We thank
Julien Lavauzelle for this picture.

Both of the classes of foliations Fi, i = 1, 2 consist of oriented foliations with singularities in all
the vertices of the system. Note that these foliations can be restricted to the invariant subset of the
billiard map, e.g. the interior of any closed trajectory is foliated by the foliations from these classes
if one takes such parameters such that the closed trajectory is a leaf of these foliations.

Example. It is interesting to see the foliation F2 with a base point in the vertex of one of the added
tiles (not the middle vertex). One can see that the loop going around the vertex in the midle made
by the boundaries of tiles can be considered as a degenerate leaf of the foliation F2 that can’t be
oriented. The existence of such leaves is an obtruction for the Tree conjecture, see Figure 8

One can see that on this example, there exist two separatrix loops in one vertex belonging to the
same oriented foliation F1 such that one of them contains the other. We conjecture that for the
triangle tiling billiards this is not possible and prove that this is the sufficient condition in order for
the Tree conjecture to hold.

In other words, we reduce the Tree conjecture to the following

Conjecture 3 (Flower conjecture). For a triangle tiling billiard, two separatrix loops in one vertex,
they have the same orientation as curves with respect to infinity. The open domains that they bound
are disjoint.

Let us give a remark on the name. One can see that for any fixed foliation F1, each vertex of this
foliation is a singular point. The number of separatrices of such a point is even (since the foliation is
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Figure 8. Behavior of the trajectories of the foliation F2 for the tiling defined as a small
perturbation of triangle tiling, see Proposition 3. In such a new locally foldable tiling one
can see that the local behavior of the foliation F2 centered at one of the singular points
is the following. Inside the inserted six tiles the trajectories move counter-clockwise.
Outside the tiles and close to the tiles the trajectories in F2 move clock-wise. One can
choose one blue and one red trajectory in such a way that they belong to the same
foliation F1. Then, the area between two these trajectories can be foliated by the closed
trajectories of period 12.

Figure 9. Possible local behavior of separatrices of triangle tiling billiards, in the case
if the Flower Conjecture holds.

oriented), in other words, 0, 2, 4 or 6. Suppoe that a vertex is contained inside some closed trajectory.
Hence, in a corresponding foliation F1 all the separatrices of this vertex have to eventually come back
to themselves and form closed loops. If the Flower conjecture holds, one of the three local pictures of
the behavior of the separatrices is possibl, see Figure 9.

Theorem 1. If the Conjecture 3 holds then the Conjecture 1 holds.

Proof. For a periodic trajectory, it is contained in the annulus of parallel periodic trajectories in
F1. One contracts it inside the zone bounded by it to obtain a trajectory that bounds a smaller
volume, tille the moment when this leaf is a separatrix or the union of the separatrices. One looks
at the boundary of the maximal annulus. A separatrix entering the same vertex from which it goes
out (separatrix loop) is a well defined trajectory - a singular trajectory. Then, a local behavior of
separatrices in one vertex can be one of four kinds - see Figure 9 or a point. If we reduced the behavior
to the point, the initial trajectory has period 6 and satisfies tree conjecture. If not, one can proceed by
induction. Since the synbolic dynamics of the periodic trajectory is defined by the symbolic dynamics
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Figure 10. A Figure from [9] with a first step of induction for Flower Conjecture drawn.

of the separatrices inside it and since topologically, one of the four pictures is possible on each of the
steps (0, 1,2 or 3 petals). Each vertex is singular hence by each vertex passes a separatrix of F1.
For each periodic trajectory inside, the number of vertices inside it diminishes at least by one. Each
trajectory contains at least 1 singular point. If n vertices, degenerate and take the union. Then the
symbolic behavior ω = w0w1w2 where wj are symbolic behaviors of periodic trajectories characterizing
the petals, see Figure 10. �

Remark. A simpler proof for obtuse triangles (than in [9]) if flower conjecture holds is given by the
fact that each flower for obtuse triangle tiling has at maximum two petals.

If Flower conjecture holds for some part of the plane, there one has tree conjecture.Tree conjecture
is completely true if flower conjecture is. For ANY locally foldable tiling.

In general, one could understand the geometry of graphs inside if the tree conjecture doesn’t hold
(see read notebook no-dec 2018) Union of graphs.... This is based on ny idea of what makes conjecture
flower not work but I maybe wrong since my proof of it is wrong...

3. Invariants of Rauzy graphs for interval exchange transformations with flips

As shown in [9, 25], the dynamics of triangle tiling billiards can be reduced to the one-dimensional
dynamics of interval exchange transformations with flips on the circle. In the way analogous to
that of the standard Rauzy induction for IET, the modified Rauzy induction can be defined for
interval exchange transformations with flips [37]. Although, a geometric and combinatorial study of
Rauzy graphs corresponding to this modified Rauzy induction has never been conducted. The reason
being that for an IET with flips, one may not necessarily construc an associated flat surface through
Rauzy-Veech zippered rectangles construction - in some cases, these surfaces simply just do not exist.
Although, as we show with P. Hubert and P. Mercat, in the case of fully flipped IETs, these surfaces
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can indeed be constructed and seem to have beautiful combinatorial properties that we do not yet
fully understand.

Using combinatorics of Rauzy classes, Kontsevich and Zorich classified the connected components
of strata of the moduli spaces of Abelian differentials [30], and the case of linear involutions (and
corresponding quadratic differentials) has been studied by Boissy-Lanneau [10]. These two studies
use the natural geometric structures related to corresponding (generalized) interval exchange trans-
formations: oriented flat surfaces with an oriented foliation in the case of Abelian differentials, and
oriented flat surfaces with a non-oriented vertical foliation in the case of quadratic differentials. Inthe
case of IETs with flips that is interesting to us, associated surfaces are non-orientableand have an
oriented foliation which is constructed as a suspension of an IET with flips. This complexifies the
study.

Problem 1. Generalize Rauzy-Veech zippered rectangles construction of a flat surface associated to
an IET to the case of an IET with flips. Classifty those IETs with flips for which such a surface exists.

Problem 2. Find combinatorial invariants of Rauzy graphs of (certain) IETs with flips, and obtain
the classification of connected components in the corresponding moduli space.

We are now intensively working on these two problems with P. Mercat and P. Hubert, so I do not go
into details here in hope that we finish the study, and write it up in a nice way. These two problems
are connected to the following one that was studied, among others, in [44].

Problem 3. Caracterise those elements of IETFn[0, 1] which are minimal.

We hope to answer this question, at least in the case of 5 intervals: make the combinatorial structure
as well as the lengths of such intervals explicit. For the case of 3 intervals (or less), none of the elements
of IETFn[0, 1] is minimal: the modified Rauzy induction always stops, and there is always a periodic
cylinder. For the case of4 intervals, the question is solved in [25] and we prove that the minimal
transformations correspond to the combinatorics coming from 3-interval fully flipped transformation
on the circle coming from tiling billiards. Moreover, the lengths of the intervals are parametrized by
the Rauzy gasket. For n = 5, we hope to obtain a similar answer in terms of cyclic quadrilateral tilings
and obtain a definition of the Rauzy gasket in higher dimension as well as find invariant measures
for this set, following [7, 8]. Following some simulations we already did, we think that starting
from 6 intervals, new phenomena can appear, and the thermodynamic formalism will be much more
complicated.

4. Negative refraction in the wind-tree model

In a current project with D.Davis and F. Valdez, we decided to adapt a famous wind-tree model
in the context of tiling billiards with refractions. This model was proposed by Paul and Tatiana
Ehrenfest in the context of statistical mechanics, and since then has been studued a lot from the
mathematical point of view [24, 14].

We consider a following adaptation of this model : we study a billiard in the euclidian plane with
obstancles in the form of rectangles placed in the points of the lattice Λ of the plan. We know suppose
that a ball can enter inside the obstacles and then get out of them, and in doing so, the trajectory
will follow the refraction coefficient equal to −1. We are interested in the dynamics of this billiard.

Note that there exists a natural non-oriented foliation defined with respect to these trajectories.
A lattice is (a, b)-admissible if the obstacles of size a× b put in the points of such a lattice do not

intersect. A direction θ ∈ S1 is trapped if any trajectory parallel to this direction on the exterior of
the obstacles is contained in some band in the plane. We hope to prove the following conjecture, see
Figure 3 for illustration of one trajectory.

Conjecture 4. For all a, b and all lattices Λ that are (a, b)-admissible, almost any direction θ ∈ S1 is
trapped.
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We also hope to construct the examples of lattices Λ and directions θ which are ergodic and do not
conform to a general rule.

This dynamical system has a strong connection (in its dynamical behavior as well as in its geometric
meaning and symmetries) to Eaton lenses system, for which the analogue of Conjecture 4 has been
proven in [17, 18, 19]. The arguments of the proofs are the following : first, the authors construct
an infinite translation surface M̃ on which the dynamics of a vertical flow corresponds to a studied
billiard. Then, by using symmetries, one can pass to the double cover and obtain a compact translation
surface M . The last (and most technical) step is to establish the dictionnary between moduli spaces
of double covers and the space of affine lattices. This permits Birkhoff and Oseledets genericity and,
finally, to apply the machinerie of Kontsevich-Zorich cocycles to this problem. We hope to apply a
similar strategy to the wind-tree case. The difficulty is that e M ∈ H(1, 1) for Eaton lenses and
M ∈ H(2, 2) in our case. We are in a harder component and even more, the change of parameter θ for
Eaton lense just gives a circle in moduli space. In our case, we obtain a more difficult curve. We still
hope that genericity criteria established by Fraczek-Shi-Ulcigrai can be applied, by using the work by
Avila-Eskin-Möller[6] and Eskin-Filip-Wright[16].

5. From the point of view of geometric group theory: SAF invariant and fully
flipped IET

One can interest ourselves in the dynamics of IETs with flips from the point of view of geometric
group theory. A couple of elements from IETFn - what group do they form ?

I would like to thank Yves Cornulier for the following valuable remark.

Lemma 4. Let X be the set of all maps in IET such that there exists a fully flipped interval exchange
transformation F for which X = F 2. Then the subgroup of IET generated by X coincides with the
kernel IET0 := {F ∈ IET : SAF (F ) = 0} of the SAF invariant.

Proof. IET ⊂ IET o Z/2Z = IET t FET. As proven in [25], Proposition 18, X ⊂ IET0. The set
X is invariant by conjugation by elements in IET t FET. Hence X is invariant by conjugation in
IET0 (as its subgroup). Hence < X > us a normal subgroup of IET0. But IET0 is simple hence
< X >= IET0. �

This completes a description of IET0 given in [46] by Vorobets.

Definition 3. A group G is simple if ∀g ∈ G, g 6= 1 and ∀h ∈ G there exist n ∈ N and x1, . . . , xn ∈ G,
e1, . . . , en ∈ {±1} such that

h = x1g
e1x−11 . . . xng

enx−1n . (1)
A group G is uniformly simple if there exists a uniform n ∈ N such that ∀g ∈ G, g 6= 1 and ∀h ∈ G
there exist x1, . . . , xn ∈ G, e1, . . . , en ∈ {±1} such that (1) holds.

Question 3. Is the group IET0 uniformly simple ?

Question 4. There is a natural family of fully flipped IETs related to triangle tiling billiards called
CET3

τ . For τ = 1
2
the involutions to take in order to write a map as a product of involutions are

obvious. But in general case ?... For any τ , and how many are they ?
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